АС - основание. Проводим высоты АН2, СН3 и ВН1 соответственно из углов А, С и В.
Высота ВН1, проведённая к основанию является медианой и биссектриссой угла В, тогда СН1 = 12/6 =2
Рассмотрим треугольник ВСН1: cos C = СН1 / ВС = 6/18 =1/3
Расмотрим треугольник АСН2: cos C = CH2 / AC, отсюда СН2 = АС*cos C = 12 * 1/3 = 4
Тогда ВН2 = 18-4 = 14
Согласно теореме: в любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному, т.е. треугольник ВН2Н3 подобен треугольнику АВС. к = ВН2/ВС = 14/18 = 7/9
Посчитаем расстояния меж точками CD = sqrt((2-6)^2+(2-5)^2) = sqrt(4^2+3^2) = sqrt(16+9) = sqrt(25) = 5 DE = sqrt((6-5)^2+(5-(-2))^2) = sqrt(1^2+7^2) = sqrt(50) = 5sqrt(2) EC = sqrt((5-2)^2+(-2-2)^2) = sqrt(3^2+4^2) = sqrt(9+16) = sqrt(25) = 5 Длины двух сторон совпали, и это хорошо, треугольник действительно равнобедренный. Просят найти биссектрису, проведённую из вершины равнобедренного треугольника. А биссектриса эта совпадает с высотой и медианой. Медиана делит основание пополам в точке М М = (D+E)/2 = ((6+5)/2;(5-2)/2) = (11/2;3/2) = (5,5;1,5) CM = sqrt((2-5,5)^2+(2-1,5)^2) = sqrt(3,5^2+0,5^2) = 5/sqrt(2)
Объяснение:
АС - основание. Проводим высоты АН2, СН3 и ВН1 соответственно из углов А, С и В.
Высота ВН1, проведённая к основанию является медианой и биссектриссой угла В, тогда СН1 = 12/6 =2
Рассмотрим треугольник ВСН1: cos C = СН1 / ВС = 6/18 =1/3
Расмотрим треугольник АСН2: cos C = CH2 / AC, отсюда СН2 = АС*cos C = 12 * 1/3 = 4
Тогда ВН2 = 18-4 = 14
Согласно теореме: в любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному, т.е. треугольник ВН2Н3 подобен треугольнику АВС. к = ВН2/ВС = 14/18 = 7/9
Н3Н2 = 12*7/9 = 28/3 = 9
ответ;9