АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
Треугольник ABC равнобедренный, AC-AB=1, P=16. Возможно две ситуации: 1) BC=AB 2) BC=AC Рассмотрим первую ситуацию. Пусть AC=x. Тогда AB=x-1, BC=x-1. Тогда P=x+x-1+x-1=3x-2=16 => x=6 AC=6, AB=6-1=5, BC=5 Проводим высоту BH на AC. Так как AB=BC, то AH=HC=AC/2=3 По теореме Пифагора из треугольника ABH находим BH=√(AB²-AH²)=√(25-9)=4. Рассмотрим вторую ситуацию. Пусть AC=x, тогда BC=x, AB=x-1. P=x+x+x-1=3x-1=16 => x=17/3 AC=17/3, BC=17/3, AB=17/3-1=14/3 Из вершины C на сторону AB проводим высоту CD. Так как BC=AC, то BD=AD=AB/2=(14/3)/2=7/3 Зная это, из треугольника ADC можно найти cos∠A=AD/AC=(7/3)/(17/3)=7/17. Значит, sin∠A=√(1-cos²∠A)=√(1-49/289)=√240/17=4√15/17 Из вершины B опустим высоту BH на AC. Зная AB и sin∠A, из треугольника ABH можно найти BH=AB*sin∠A=(14/3)*4√15/17=56√15/51 ответ: 4 или 56√15/51.
В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД.
АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14,
86=4АД-14,
АД=25 см.
ВМ - высота на сторону АД.
В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см.
В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см.
ВС=АД-14=25-14=11 см.
Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.