На сторонах АВ і АC трикутника АВС позначено відповідно точки D E. Відомо, що ЕС=АВ=4, AD=1, ВC=8, АС=6. Знайдіть: 1) косинус кута ВАС 2) довжину відрізка DE.
Для начала найдем координаты векторов (сторон) и их модули (длины). Вектор |АВ|=√[(Xb-Xa)²+(Yb-Ya)²]= √(0+3²)=3. AB{0;3}. Вектор |АD|=√[(Xd-Xa)²+(Yd-Ya)²]= √(4²+2²)=2√5. AD{4;2}. Вектор |BC|=√[(Xc-Xb)²+(Yc-Yb)²]= √(2²+1²)=√5. BC{2;1}. Вектор |CD|=√[(Xd-Xc)²+(Yd-Yc)²]= √(2²+(-2)²)=2√2. CD{2;1}. Мы видим, что в четырехугольнике нет равных сторон. Проверим их на параллельность (коллинеарность). Два вектора коллинеарны, если отношения их координат равны. Таким образом, вектора ВС и AD - параллельны, то есть четырехугольник - трапеция. Проверим, не прямоугольная ли у нас трапеция. Для этого достаточно проверить углы между боковыми сторонами и основанием - векторами АВ и AD, и DA и DC. Углы между векторами (сторонами) находятся по формуле: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". <A - угол между векторами АВ и АD CosA ( = (0+6)/(6√5)=√5/5 ≈ 0,447. <A=arccos(0,447) ≈64°. <D - угол между векторами DA и DC: CosD= (8+(-4))/(4√10)= √10/10 ≈ 0,316. <C=arccos(0,316) ≈72°. Прямых углов нет. Итак, четырехугольник выпуклый и является трапецией. P.S. Для проверки решения сделаем чертеж на координатной плоскости. (см. приложение).
Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.при каждой вершине треугольника есть два внешних угла. чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. таким образом получаем 6 внешних углов. внешние углы каждой пары при данной вершины равны между собой (как вертикальные): дано: ∆авс, ∠1 — внешний угол при вершине с.
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.
Вектор |АВ|=√[(Xb-Xa)²+(Yb-Ya)²]= √(0+3²)=3. AB{0;3}.
Вектор |АD|=√[(Xd-Xa)²+(Yd-Ya)²]= √(4²+2²)=2√5. AD{4;2}.
Вектор |BC|=√[(Xc-Xb)²+(Yc-Yb)²]= √(2²+1²)=√5. BC{2;1}.
Вектор |CD|=√[(Xd-Xc)²+(Yd-Yc)²]= √(2²+(-2)²)=2√2. CD{2;1}.
Мы видим, что в четырехугольнике нет равных сторон.
Проверим их на параллельность (коллинеарность).
Два вектора коллинеарны, если отношения их координат равны.
Таким образом, вектора ВС и AD - параллельны, то есть четырехугольник - трапеция.
Проверим, не прямоугольная ли у нас трапеция.
Для этого достаточно проверить углы между боковыми сторонами и основанием - векторами АВ и AD, и DA и DC.
Углы между векторами (сторонами) находятся по формуле:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
<A - угол между векторами АВ и АD
CosA ( = (0+6)/(6√5)=√5/5 ≈ 0,447. <A=arccos(0,447) ≈64°.
<D - угол между векторами DA и DC:
CosD= (8+(-4))/(4√10)= √10/10 ≈ 0,316. <C=arccos(0,316) ≈72°.
Прямых углов нет.
Итак, четырехугольник выпуклый и является трапецией.
P.S. Для проверки решения сделаем чертеж на координатной плоскости. (см. приложение).