В равнобедренном треугольнике ABC произведена высота BD к основанию AC. Длина высоты – 8,5 см. Длина боковой стороны – 17 см. Определи углы этого треугольника.
Рисуем циркулем произвольную окружность удобного размера ( циркуль не сводим - бережем отмеренный радиус).Проводим линейкой отрезок через центр окружности О - это будущая биссектриса треугольника( она же высота и медиана, поскольку треугольник равнобедренный) Ставим иглу циркуля снова в центр окружности, отмечаем на окружности карандашом точку А на расстоянии R (радиус). Измеряем циркулем расстояние от точки А до отрезка - биссектрисы и высоты треугольника, ставим точку Д, откладываем это же расстояние до окружности ставим точку В.Соединяем точки А, Д и В прямой - это основание равнобедренного треугольника. Стороны могут быть радиусы - треугольник АОВ или ставим точку С и соединяем с точками А и В - треугольник АСВ.
Рисуем циркулем произвольную окружность удобного размера ( циркуль не сводим - бережем отмеренный радиус).Проводим линейкой отрезок через центр окружности О - это будущая биссектриса треугольника( она же высота и медиана, поскольку треугольник равнобедренный) Ставим иглу циркуля снова в центр окружности, отмечаем на окружности карандашом точку А на расстоянии R (радиус). Измеряем циркулем расстояние от точки А до отрезка - биссектрисы и высоты треугольника, ставим точку Д, откладываем это же расстояние до окружности ставим точку В.Соединяем точки А, Д и В прямой - это основание равнобедренного треугольника. Стороны могут быть радиусы - треугольник АОВ или ставим точку С и соединяем с точками А и В - треугольник АСВ.
30°
30°
120°
Объяснение:
sin(BAC)=BD/AB=8.8/17=0.5
угол BAC=30°
угол BAC=BCA=30°
угол ABC=180-30-30=120°