Дополнительное построение: PD; рассмотрит треуг DMP и треуг DKP, получим MP=PK ( по усл) , PD-общая, DM=DK(по усл) , тогда эти треуг равны ( по трем сторонам) ; в равных треугольниках напротив равных сторон лежат равные углы, тогда <MDP=<KDP, а раз они равны, то DP-биссектриса ( т. к. Биссектриса делит угол пополам) , что и требовалось доказать.
1) Т. к. в равнобедренном треугольнике боковые стороны равны, а медианы, выходят из вершин и пересекают противоположную грань посередине, можно записать что AK=CM. 2) В равнобедренном треугольнике, медианы пересекаются в точке О. Эта точка, делит медиану в соотношении 2:1 начиная от вершины. Учитывая, что медианы в равнобедренном треугольнике равны (?нужно уточнить?), можно сказать, что КО=ОМ, а АО=ОС. 3) Исходя из 1)АК=СМ и 2) КО=ОМ, АО=ОС можно сделать вывод, что треугольники равны по трём сторонам => Треугольники АКО и СОМ равны
1) Т. к. в равнобедренном треугольнике боковые стороны равны, а медианы, выходят из вершин и пересекают противоположную грань посередине, можно записать что AK=CM. 2) В равнобедренном треугольнике, медианы пересекаются в точке О. Эта точка, делит медиану в соотношении 2:1 начиная от вершины. Учитывая, что медианы в равнобедренном треугольнике равны (?нужно уточнить?), можно сказать, что КО=ОМ, а АО=ОС. 3) Исходя из 1)АК=СМ и 2) КО=ОМ, АО=ОС можно сделать вывод, что треугольники равны по трём сторонам => Треугольники АКО и СОМ равны