ответ: Ѕ=640 см²
Объяснение:
Пусть М - середина ВС, ВН - перпендикуляр из В на АС.
В прямоугольном ∆ FMC из Пифагоровых троек 8:15:17 ( или по т.Пифагора) катет МF=8 (см).
MF - средняя линия ∆ НВС⇒ в ∆ АВС высота ВН =2•MF=16 (СМ)
Одна из формул площади треугольника
S=0,5•h•а (h- высота, а - сторона, к которой она проведена)
S(ABC)=0,5•16•(25+15)=640 (см²)
или по другой формуле:
S=0,5•a•b•sinα, где а и b - стороны треугольника, α - угол между ними.
sin∠MCA=MF:MC=8/17
S (АВС)=0,5•40•34•8/17=640 (см²)
10 см.
Объяснение:
✓РЕШЕНО МУДROST✓
Если ∠С = 90°, а ∠В=60°, то
∠А=180°-(90°+60°)=180°-150°=30°-по теореме о сумме углов в треугольнике.
В условии сказано что сумма гипотенузы и меньшего катета равна 30 см. Чтобы понять какой катет меньший, для это нужно посмотреть на углы, которые находятся напротив катетов. Напротив ∠А находится самый маленький катет, т.к ∠А самый маленький в этом треугольнике.
Значит, СВ+АВ=30 см.
Напротив угла равного 30° лежит катет СВ⇒ он равен половине гипотенузы АВ.
Пусть х см - гипотенуза АВ, то
СВ=
Составим и решим уравнение:
x+0,5х=30
1,5х=30
х=30:1,5
х=20
Итак: гипотенуза АВ=20 см, тогда
СВ= см.
✓РЕШЕНО МУДROST✓
Объяснение:
Вообще при параллельных прямых и секущей образуется 8 углов, в значений всего 2, т.к. они там все попарно равны, на рисунке равны 1 и 3 как вертикальные, 1 и 5 как соответственные, 5 и 7 как вертикальные
/1=/3=/5=/7
И соответственно также: /2=/4=/6=/8
Это верно для обоих случаев в этой задаче
Теперь к решению:
1.
Предположим, что угол 2 равен 35 градусов
Тогда угол 1, как смежный с ним, равен 180-35=145 градусов, остальное доказывается так же, как я расписал выше, все углы будут либо 35, либо 135 градусов, это основные свойства.
2.
Предположим, что угол 2 это х градусов, тогда угол 1 это 4х градусов, составляем уравнение:
х+4х=180
5х=180
х=36
Тогда угол 2 равен 36 градусов
А угол 1 равен 144 градуса
И остальные тоже соответственно равны им по свойствам углов