Розглянемо трикутники АВМ і А1В1М1. За умовою АВ = А1В1, АМ = А1М1, ﮮВАС = ﮮВ1А1С1. Оскільки АМ і А1М1 – бісектриси рівних кутів ВАС і В1А1С1, тоді ﮮВАС = 2ﮮВАМ = ﮮВ1А1С1 = 2ﮮВ1А1М1, тобто ﮮВАМ = ﮮВ1А1М1. За двома сторонами та кутом між ними ∆ВАМ = ∆В1А1М1. У рівних трикутників відповідні сторони та кути рівні АВ = А1В1, ﮮВМА = ﮮВ1М1А1. Розглянемо трикутники АМС і А1М1С1. За умовою ﮮВАС = 2ﮮМАС = ﮮВ1А1С1 = 2ﮮМ1А1С1, тобто ﮮМАС = ﮮМ1А1С1, переконаємось, що ﮮАМС = ﮮА1М1С1, тобто різниця величин двох кутів дорівнює нулю. Кути розгорнуті ﮮВАС = ﮮВ1М1С1 = 180˚. Тому ﮮАМС – ﮮА1М1С1 = (180˚ - ﮮВМА) – (180˚ - ﮮВ1М1А1) = ﮮВ1М1А1 – ﮮВМА = 0˚. За стороною і двома прилеглими кутами ∆АМС = ∆А1М1С1. У рівних трикутників відповідні сторони і кути рівні АС = А1С1, ﮮАСВ = ﮮА1С1В1, МС = МС1. За основною властивістю довжини відрізка ВС = ВМ + МВ = В1С1 = В1М1 + М1С1. Трикутники АВС і А1В1С1 рівні.
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x - 14 .
Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .
Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.