Найдите координаты точки пересечения медиан треугольника с вершинами A(-3;-1), B(2; 1), C(4;-4). напишите уравнение прямой проходящей через среднюю линию треугольника, параллельной стороне ВС
1. ΔАВС и ΔАDС равны по второму признаку равенства треугольников. в них АС- общая. а углы, прилежащие к этой стороне, равны по условию. Поэтому АВ=DС, ВС=АD, значит, по признаку параллелограмма четырехугольник АВСD - параллелограмм. Доказано.
5. BD- общая для ΔАВD и ΔDСВ, стороны ВС и АD -равны по условию, углы между ВD и ВС и ВD и DА равны по условию. значит, ΔАВD и ΔDСВ равны по первому признаку равенства треугольников. а ВС и АD равны и параллельны, т.к. ∠СВD=∠АDВ, а это внутренние накрест лежащие при ВС и АD и секущей ВD, по признаку четырехугольник АВСD - параллелограмм. Доказано.
7. Из равенства этих треугольников вытекает равенство сторон АВ и С D , кроме того, углы ВАО и СОD равны, но это внутренние накрест лежащие при прямых АВ и СD, секущей АС, значит, прямые АВ ║ СD.
По признаку четырехугольник АВСD - параллелограмм. Доказано.
Решается очень просто, просто нужно немножко подумать.Постараюсь объяснить! из точки В к основанию АД опускаешь высоту, получается высота ВК. из точки С опускаешь высоту к основанию АД, получается высота СМ. ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14 АК=МД=14/2=7 В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы. В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30 Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14
1. ΔАВС и ΔАDС равны по второму признаку равенства треугольников. в них АС- общая. а углы, прилежащие к этой стороне, равны по условию. Поэтому АВ=DС, ВС=АD, значит, по признаку параллелограмма четырехугольник АВСD - параллелограмм. Доказано.
5. BD- общая для ΔАВD и ΔDСВ, стороны ВС и АD -равны по условию, углы между ВD и ВС и ВD и DА равны по условию. значит, ΔАВD и ΔDСВ равны по первому признаку равенства треугольников. а ВС и АD равны и параллельны, т.к. ∠СВD=∠АDВ, а это внутренние накрест лежащие при ВС и АD и секущей ВD, по признаку четырехугольник АВСD - параллелограмм. Доказано.
7. Из равенства этих треугольников вытекает равенство сторон АВ и С D , кроме того, углы ВАО и СОD равны, но это внутренние накрест лежащие при прямых АВ и СD, секущей АС, значит, прямые АВ ║ СD.
По признаку четырехугольник АВСD - параллелограмм. Доказано.