При симметрии относительно плоскости ОХУ координаты х и у точки не изменятся, а координата z поменяет знак на противоположный, так как симметричная точка будет находиться на таком же расстоянии от плоскости ОХУ, но с другой стороны.
Тогда центр сферы, точка с координатами (4; –2; 1) перейдёт в точку с координатами (4; –2; –1).
Уравнение сферы: (х – а)² + (у – b)² + (z – c)² = R²
(a; b; c) – координаты центра сферы, R – радиус сферы.
Тогда уравнение сферы с центром в точке с координатами (4; –2; –1) и радиусом 3 см примет вид:
Рассмотрим сечение образованное высотой конуса, его образующей и радиусом основания. Это прямоугольный треугольник, в котором гипотенуза (образующая) равна 8, а острый угол между радиусом и образующей равен 30 градусов. Тогда высота конуса Н равна половине гипотенузы, т.е 4, а радиус основания равен гипотенуза умножить на косинус 30 градусов, т.е 4 корня из 3. Объем конуса равен трети площади основания на высоту. В основании круг, т.е его площадь равна Пи умножить на радиус в квадрате, т.е 48 Пи. Тогда Подставляем все найденные величины в формулу и получаем: V = 1/3 * 48 Пи * 4 = 64 Пи (кубических единиц). ответ: 64 Пи.
При симметрии относительно плоскости ОХУ координаты х и у точки не изменятся, а координата z поменяет знак на противоположный, так как симметричная точка будет находиться на таком же расстоянии от плоскости ОХУ, но с другой стороны.
Тогда центр сферы, точка с координатами (4; –2; 1) перейдёт в точку с координатами (4; –2; –1).
Уравнение сферы: (х – а)² + (у – b)² + (z – c)² = R²
(a; b; c) – координаты центра сферы, R – радиус сферы.
Тогда уравнение сферы с центром в точке с координатами (4; –2; –1) и радиусом 3 см примет вид:
(х – 4)² + (у + 2)² + (z + 1)² = 3²
(х – 4)² + (у + 2)² + (z + 1)² = 9
Найдём объём шара:
V = 4/3∙πR³
V = 4/3∙π·3³ = 4∙π·9 = 36π