1.Найдите площадь квадрата, если его периметр равен 100 см. У квадрата 4 стороны, и они равны, поэтому 100:4=25 одна сторона. Площадь =25*25=625 м2
2.Периметр прямоугольника равен 80 см, а длина в 3 раза больше ширины. Найдите его площадь? 80:2=40 см это суммы ширины и длины так как длина в3 раза больше, то это 3 части, а ширина 1 часть, всего 4 части 40:4=10 см это одна счасть, то есть ширина 10*3=30 см длина 10*30=300 см2 площадь
3.Стороны прямоугольника равны 25 см и 4 см. Каковы стороны равновеликого ему прямоугольника, у которого стороны равны? 25*4=100 см2 площадь √100=10 см сторона прямоугольника
4. Найдите периметр прямоугольника если его площадь равна 128 см², а длины его сторон относятся как 1 : 2. пусть одна сторона х, другая 2х 1х*2х=128 2х²=128 х²=64 х=8 см ширина 8*2=16 см длина 2*(8+16)=2*24=48 см периметр
5. Найдите стороны квадрата, площадь которого равна площади прямоугольника со сторонами 8 см и 98см. 8*98=784 см2 площадь прямоугольника √784=28 см стороны квадрата
6. Как измениться площадь прямоугольника, если его стороны уменьшить в 3 раза. х,у стороны прямоуг. х/3*у/3=ху/9 площадь уменьшится в 9 раз.
Так как в условии ничего нет про угол, под которым отрезок пересекает плоскость, примем его за 90°. В этом случае действительно можно говорить о том, что расстояния от концов отрезка до плоскости являются частями самого отрезка, то есть перпендикуляры из концов отрезка на плоскость совпадают с самим отрезком. Тогда длина отрезка: L = h₁+h₂ = 3 + 12 = 15 (cм) и L/2 = 7,5 (cм) Так как концы отрезка находятся по разные стороны плоскости, расстояние от середины отрезка до плоскости будет меньше половины длины отрезка на величину расстояния от ближнего к плоскости конца отрезка до самой плоскости. То есть: h = L/2 - h₁ = 7,5 - 3 = 4,5 (см)
ответ: расстояние от середины отрезка до плоскости 4,5 см
Решение через подобие треугольников. (см. рис.)
Расстоянием от точки до плоскости является перпендикуляр, опущенный из этой точки на данную плоскость. Следовательно, АА₁⊥α и ВВ₁⊥α. Через точки А₁ и В₁ проведем прямую А₁В₁. Рассмотрим треугольники АА₁О и ВВ₁О: Данные треугольники являются прямоугольными и ∠АОА₁=∠ВОВ₁, как вертикальные. Значит, данные треугольники подобны по двум углам, и АО/ОВ = 12/3 = 4 Обозначим ОВ₁=х, тогда ОА₁=4х Весь отрезок АВ=х+4х=5х, и половина отрезка АВ:2 = АС = СВ = 5х:2 = 2,5х Тогда отрезок ОС = 4х-2,5х = 1,5х
Рассмотрим треугольники АОА₁ и СОС₁: Так как СС₁⊥α => CC₁⊥A₁B₁ ∠АОА₁ - общий Следовательно, эти треугольники также подобны по двум углам, и АО/CO = 12/CC₁ 4x/1,5x = 12/CC₁ CC₁ = 12*1,5/4 = 4,5 (см)
см. У квадрата 4 стороны, и они равны, поэтому 100:4=25 одна сторона.
Площадь =25*25=625 м2
2.Периметр прямоугольника равен 80 см, а длина в 3 раза больше
ширины. Найдите его площадь?
80:2=40 см это суммы ширины и длины
так как длина в3 раза больше, то это 3 части, а ширина 1 часть, всего 4 части
40:4=10 см это одна счасть, то есть ширина
10*3=30 см длина
10*30=300 см2 площадь
3.Стороны прямоугольника равны 25 см и 4 см. Каковы
стороны равновеликого ему прямоугольника, у которого стороны равны?
25*4=100 см2 площадь
√100=10 см сторона прямоугольника
4. Найдите периметр прямоугольника если его площадь равна
128 см², а длины его сторон относятся
как 1 : 2.
пусть одна сторона х, другая 2х
1х*2х=128
2х²=128
х²=64
х=8 см ширина
8*2=16 см длина
2*(8+16)=2*24=48 см периметр
5. Найдите стороны
квадрата, площадь которого равна площади прямоугольника со сторонами 8 см и 98см.
8*98=784 см2 площадь прямоугольника
√784=28 см стороны квадрата
6. Как измениться площадь прямоугольника, если его стороны
уменьшить в 3 раза.
х,у стороны прямоуг.
х/3*у/3=ху/9 площадь уменьшится в 9 раз.