1.В трикутнику МNK з основою МК медіана ND є висотою. Доведіть, що трикутник MNK - рiвнобедрений. 2.Дано: трикутник АВС - рівнобедрений, АВ - основа, AN, BM - висоти, проведені до бічних сторін, причому ВN = AN . Довести: AN = BM
Углы ВСО и DAO - накрест лежащие углы при пересечении двух прямых ВС и AD секущей АС. По условию они равны, значит, ВС II AD. Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов): - <BCO=<DAO по условию; - <BOC=<DOA как вертикальные углы; - АО=СО по условию. У равных треугольников равны и соответственные стороны ВО и DO. Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - ВО=DO как только что доказано; - АО=СО по условию; - углы ВОА и DОС равны как вертикальные.
т.к ромб-параллелограмм с одинаковыми сторонами(AB=BC=CD=AD),то углы противоположные равные,тоесть BAD=BCD=80, ABC=ADC=360-bad-bcd=(360-80-80)/2=100 . если разбить ромб на треугольники,то получим 2 равнобедренных треугольника-ABD и BCD(АB=AD в треугольнике ABD)(BC=CD в треугольнике BCD). в них высоты CO и AO являются не только высотами,но и биссектриссами и медианами. т.к CO-биссектрисса,то угол BCO=DCO=80/2=40. раввнобедренный треугольник ADC состоит из 2 прямоугольных треугольников: AOD и COD. т.к OD-биссектрисса,то ADO=CDO=ADC/2=100/2=50. в треугольнике COD угол DOC-прямой (90),угол CDO-50,а DCO-40.
ответ:У них: 1)BN=AN - за умовою
2) AB-основа
3) AN,BM - висоти
Отже: AN=BM за двома сторонами.
Объяснение: