Рассмотрим треугольник, образованный половинами диагоналей (диагонали у прямоугольника равны, поэтому и половинки равны) малой стороной. так как половины диагоналей равны, то рассматриваемый треугольник, как минимум, равнобедренный. Углу при его основании равны. Сумма углов в треугольнике 180, значит угол при основании треугольника (180-60)/2=60. как видим, три угла равны 60град. Значит, рассматриваемый треугольник равносторонний, а равностороннего треугольника стороны равны. Значит половина диагонали равна 32. Значит вся диагональ 2×32=64см. Все. Нарисуйте и назовите буквами. Мои слова запишите через буквы
Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
1)
Объяснение:
надеюсб , вот