4) АС=24см, Sавсд=120см²
5) 12 см
Объяснение:
4)
В ромбе АВ=13см, ВД=10см
так как это ромб, то ВО=ОД=ВД/2=10/2=5 см
В ромбе диагонали пересекаются под прямыми углами
В прямоугольном треугольнике АВО по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов) находим сторону АО
АО²=АВ²-ВД²=13²-5²=144
АО=12см
АС=АО+ОС, АС=12+12=24см
Площадь ромба равна половине произведения его диагоналей
S=1/2*(ВД*АС)=1/2*(10*24)=120см²
5)Высота в треугольнике равна h=2/a√(p*(p-a)*(p-b)*(p-c)) где р - полупериметр p=(25+20+15)/2=30
Наименьшая высота будет при использовании в формуле наибольшей длины, поэтому
h=2/25√(30*(30-25)*(30-20)*(30-5))=2/25*150=12 см
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
первый угол равен 80, второй равен 103