1. Найдем координаты векторов АВ, АС, АД, везде, где речь идет о векторах, над ними ставьте черту или стрелку. Но у меня к сожалению нет такой возможности. Чтобы найти их координаты, надо от координат конца вычесть координаты начала вектора, АВ(-2-3; 1-2;3-4); АВ(-5;-1;-1)
АС(-1;-4;-5); АД(-1;3;-) Объем найдем, как 1/6 от модуля детерминанта или определителя, где в первой строке поставим координаты вектора АВ, во второй АС , в третьей АД, и вычислим этот определитель по правилу треугольника.
v=(1/6)*║-5 -1 -1 ║
║-1 -4 -5║
║ -1 3 1║, здесь линии должны быть непрерывными, как в модуле, а раскрывается этот определитель так
(1/6)*(модуль от (20-5+3+4-1-75))= модуль минус 54/6=9, т.е. объем равен
9 ед. куб. Из формулы объема пирамиды, известного из курса средней школы, v=s*h/3, находим высоту h=3v/s=3*9/15.3=9/5.1=30/17≈1.76
∠NBC = 60°
∠ABN = 90° - ∠NBC = 30°
AB = BN, значит ΔABN равнобедренный, углы при основании равны:
∠BAN = ∠BNA = (180° - 30°)/2 = 75°
∠NAD = 90° - ∠BAN = 90° - 75° = 15°
2. ∠BAF = ∠DAF так как AF - биссектриса,
∠DAF = ∠BFA как накрест лежащие при пересечении AD║BC секущей AF, ⇒ ∠BAF = ∠BFA, треугольник BAF равнобедренный,
АВ = BF = 2 см
∠CFE = ∠AFB как вертикальные
∠CEF = ∠BAF как накрест лежащие при пересечении AB║CD секущей АЕ,
∠AFB = ∠BAF как доказано выше, ⇒
∠CFE = ∠CEF, ⇒ треугольник CFE равнобедренный,
CF = CE = 3 см
АВ = 2 см
ВС = 2 + 3 = 5 см
Pabcd = (AB + BC)·2 = (2 + 5)·2 = 14 см
3. В треугольнике АВЕ АВ = 5 см, АЕ = 3 см, ВЕ = 4 см, значит это прямоугольный (египетский) треугольник, значит ВЕ - высота трапеции.
ЕВСК - прямоугольник (ВЕ = СК как высоты трапеции, ВЕ║СК как перпендикуляры к одной прямой), ⇒ ЕК = ВС = 6 см.
ВС = 6 см
AD = 3 + 6 + 1 = 10 см
Sabcd = (AD + BC)/2 · BE = (10 + 6)/2 · 4 = 32 см²