В параллелограмме АВСD треугольники АВС и АСD равны по трем сторонам (АВ=СD и ВС=АD как стороны параллелограмма, а сторона АС - общая). Итак, Sabc=Sacd. В треугольниках АВС и АСD ВМ и DМ - медианы (так как диагонали параллелограмма в точке пересечения делятся пополам и АМ=МС). Но медианы делят треугольники на два равновеликих. Значит, Samb=Smbc=Samd=Scmd (так как равные треугольники АВС и АСD делятся также на два равных). Итак, площадь параллелограмма АВСD равна четырем площадям треугольника АМВ. Или, что одно и то же, площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB. Что и требовалось доказать.
В параллелограмме АВСD треугольники АВС и АСD равны по трем сторонам (АВ=СD и ВС=АD как стороны параллелограмма, а сторона АС - общая). Итак, Sabc=Sacd. В треугольниках АВС и АСD ВМ и DМ - медианы (так как диагонали параллелограмма в точке пересечения делятся пополам и АМ=МС). Но медианы делят треугольники на два равновеликих. Значит, Samb=Smbc=Samd=Scmd (так как равные треугольники АВС и АСD делятся также на два равных). Итак, площадь параллелограмма АВСD равна четырем площадям треугольника АМВ. Или, что одно и то же, площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB. Что и требовалось доказать.
2
Угол А + угол С =156°
угол В=180 - (угол А+ угол С)=180-156=24°
т.к углы при основании равнобедренного треугольника равны, то:
угол А=угол С= 1/2•156=78°
ответ:79;24;78
1
т.к угол АОС=110°
то угол DOC=180- угол АОС=180-110=70°(т.к смежные углы в сумме дают 180°)
угол ВОА=углу DOC=70°(т.к вертикальные)
Рассмотрим треугольник СОD
(угол ОDC=углу ADC)
угол С= 180 - угол DOC- угол ODC=180-70-45=65°
Рассмотрим треугольник ВАО
(угол АВС=АВО)
угол ВАО=180- угол АВО- угол ВОА=180-65-70=45°
т.к угол ВАО=ODC=45°
т.к АВ=CD
т.к угол АВО=C=65°
то треугольники равны по 2 ому признаку