Если образующая составляет с основанием угол 60°, то с высотой - 30°, следовательно радиус равен половине образующей, значит образующая равна 4. Высоту найдем по теореме Пифагора: h=√l^2-r^2=√16-4=√12=2√3 Чтобы найти объем вписанной правильной треугольной пирамиды, найдем стороны и площадь правильного треугольника - основания пирамиды. Радиус описанной окружности равен R=a(√3/3). Значит сторона треугольника равна a=2/√3/3=2√3. Площадь треугольника равна S=1/2*2√3*2√3*√3/2=3√3 Объём пирамиды равен V=1/3*S*H=1/3*3√3*2√3=6 см куб.
Дано: Треугольник АВС. АВ=ВСб М∈BD, K∈AC. MK║AB. <ABC=126°,<BAC=27°.
Найти <MKD, <KMD и <MDK.
Решение.
Треугольник АВС равнобедренный, следовательно BD - биссектриса, высота и медиана треугольника. <BAC=<BCA=27°, Значит
<ABD = (1/2)*(<ABC) = 126/2 = 63°. <BDA=<MDK = 90°.
MK параллельна АВ, значит <MKD=<BAC=27°, а <KMD=<ABD=63°, как соответственные углы при параллельных прямых АВ и МК и секущих AD и BD соответственно.
ответ: <MKD=27°, <KMD=63°, <MDK=90°.