См. Объяснение.
Объяснение:
1-й с шкалированной линейки).
1) Чертим произвольный отрезок.
2) Измеряем длину отрезка (L).
3) Решаем уравнение:
2х + 6х = L
x = L/8.
4) От начала отрезка откладываем:
2х = 2 * (L/8) = L/4 - это и будет точка, разбивающая отрезок в отношении: 2 : 6.
2-й с циркуля и нешкалированной линейки).
1) Чертим произвольный отрезок.
2) Из концов отрезка, раствором циркуля, превышающим половину длины отрезка, делаем по 2 засечки (сверху и снизу).
3) Прикладываем линейку к точкам пересечения засечек и проводим линию, пересекающую отрезок, - это середина отрезка.
4) Аналогично делим пополам, левую половину отрезка и полученную точку отмечаем как границу, которая делит отрезок в отношении 2:6, или, что одно и то же, - 1:3.
Объяснение:
Найдем ∠АОD=360°-π/3-π/6-3π/4=360°-60°-30°-135°=135° .
Для удобства обозначим отрезки ОА=а, ОВ=в, ОС=у, OD=х. Воспользуемся формулой площади треугольника S=0,5*а*в*sin(a,в) для всех 4-х треугольников
1)S(АОВ)=0,5*а*в*sin(a,в) , 20= 0,5*а*в*sin60 , а*в=80/√3, в=80/(а√3) ;
2)S(ВОС)=0,5*в*у*sin(в,у) , 5= 0,5*в*у*sin30 , в*у=20 ;
3)S(СOD)=0,5*х*у*sin(a,в) , 10√3= 0,5*а*в*sin135 , х*у=40√(3/2) ;
4)S(АOD)=0,5*х*а*sin(х,а) , S(АOD)=0,5*ах*sin135 , S(АOD)= 0,5*а*х*√2/2
5) матрешки
в=80/(а√3) → в*у=20 , 80/(а√3) *у=20 , у=а√3/4 ;
у=а√3/4 → х*у=40√(3/2) , х* (а√3/4) =40√(3/2) , х=160√2/(2а) ;
х=160√2/(2а) → S(АOD)=0,5*а*х*√2/2=0,5*а*160√2/(2а) *(√2/2)=40.