По теореме Пифагора удобно еще и найти гипотенузу ( тогда можно будет соответствующие функции вычислить без использования тригонометрических связей между формулами) Гипотенуза равна корень из (4+16)=2* sqrt(5). Здесь sqrt - квадратный корень. Острые углы обозначим а ( тот что напротив катета 2) и b sin(a)=2/(2sqrt(5))=sqrt(5)/5 sin(b)=4/(2sqrt(5))=2sqrt(5)/5 cos(a)=sin(b)=2sqrt(5)/5 cos(b)=sin(a)=sqrt(5)/5 tg(a)=sin(a)/cos(a)=0,5 tg(b)=1/tg(a)=2 ctg(a)=tg(b)=2 ctg(b)=tg(a)=0,5
(вектор)АВ*(вектор)АС = (вектор)СА*(вектор)СВ = 20*24*cos(BAC) =
= 20*24*6/10 = 12*24 = 288
по т.косинусов: cos(BAC) = 24² / (2*20*24) = 0.6
(вектор)ВА*(вектор)ВС = 20*20*cos(AВC) = 20*20*28/100 = 4*28 = 112
по т.косинусов: cos(AВC) = 1 - (24² / (2*20²)) = 1 - 0.72 = 0.28
S(ABC) = √(32*12*12*8) = 12*8*2 --формула Герона
S(ABC) = AB*BC*AC / (4*R)
R = 20*20*24 / (4*12*8*2) = 25/2 = 12.5
длина описанной окружности C = 2*pi*R = 25*pi
S(ABC) = 32*r
r = 6
Sкруга = pi*r² = 36*pi