Пусть AD = 9x, a CD = 40x. Тогда высота в квадрате => 80 = 9x*40x => x^2 = 80/360 => x = √2/3
AD = 9*√2/3 = 3√2
CD = 40*√2/3 = 40√2/3
Найдем площадь треугольника ABC потом разделим ее на два получим площадь одной части, а так как прямая а образует подобный треугольник с треугольником BDC найдем его площадь и коэф. подобия ну и найдем а.
S = 49√2/3 * 4√5 * 1/2 = 98√10/3 S/2 = 49√10/3
Sbdc = 40√2/3*4√5 * 1/2 = 80√10/3
коэф. подобия в квадрате k^2 = (80√10/3):49√10/3 = 80/49; k = 4√5/7
Пусть AD и BE пересекаются в точке K В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD; Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2; Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4; Таким образом, AK = KD = 48; KE = 24; BK = 72; AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13; AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
7
Объяснение:
Пусть AD = 9x, a CD = 40x. Тогда высота в квадрате => 80 = 9x*40x => x^2 = 80/360 => x = √2/3
AD = 9*√2/3 = 3√2
CD = 40*√2/3 = 40√2/3
Найдем площадь треугольника ABC потом разделим ее на два получим площадь одной части, а так как прямая а образует подобный треугольник с треугольником BDC найдем его площадь и коэф. подобия ну и найдем а.
S = 49√2/3 * 4√5 * 1/2 = 98√10/3 S/2 = 49√10/3
Sbdc = 40√2/3*4√5 * 1/2 = 80√10/3
коэф. подобия в квадрате k^2 = (80√10/3):49√10/3 = 80/49; k = 4√5/7
a = 4√5 : 4√5/7 = 7