Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.
Дано:
Прямоугольный треугольник АВС
угол С = 90 градусов
СН - высота
АН = 25 см
НВ = 9 см
Найти: СА, СВ, АВ и S - ?
1) Нам известно, что высота, которая опущена из вершины прямого угла, равна:
СН = √(АН * НВ),
СН = √(25 * 9);
СН = √225;
СН = 15 см;
2) S = 1/2 * СН * АВ,
АВ = АН + НВ = 25 + 9 = 34 (см);
S = 1/2 * 15 * 34 = 255 см^2
3) Треугольник СВН - прямоугольный. По теореме Пифагора:
СВ^2 = СН ^2 + НВ^2;
СВ^2 = 15^2 + 9^2;
СВ^2 = 225 + 81;
СВ^2 = 306;
СВ = 3√34 см;
4) Треугольник СВА - прямоугольный. По теореме Пифагора:
СА^2 = СН ^2 + АН^2;
СА^2 = 15^2 + 25^2;
СА^2 = 225 + 625;
СА^2 = 850;
СА = 5√34 см.
ответ: 5√34 см; 3√34 см; 34 см; 255 см^2.