Пусть х - это количество воды, которое вытекает из второй трубы за час. Выразим, сколько вытекает из первой трубы за час: 50% + 100% = 150%. Переводим проценты в десятичное число: 150% = 1,5. Чтобы найти дробь от числа, нужно дробь умножить на число: 1,5х (литров) - вытекает из первой трубы.
Производительность первой трубы равно 1/х, а второй - 1/(1,5х). Совместная производительность равна 1/6.
1/х + 1/(1,5х) = 1/6.
(1,5 + 1)/1,5х = 1/6.
1,5х = 2,5 * 6.
1,5х = 15.
х = 10 (часов) - наполнит бассейн вторая труба.
10 * 1,5 = 15 (часов) - наполнит бассейн первая труба.
HC=BC-BH=6-2=4
По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7
Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH
6:2√7=BD:2√3
BD=12√3:2√7=(6√3):√7 или (6√21):7
-------------
2) Найдем АС как в первом решении.
Площадь треугольника АВС
S=AC*BD:2
S=AH*BC:2
Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения:
AC*BD:2=AH*BC:2
(2√7)*BD:2=(2√3)*6:2
BD=(12√3):(2√7)=(6√3):√7 или (6√21):7
--
АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2