Задача 1:
1. Рассмотрим треугольники ABD и ACD:
Угол 1 равен углу 2 -по условию
AD- общая => треугольник ABD равен треугольнику ACD по гипотенузе и острому углу
2. Из рав-ва треугольников следует рав-во соответствующих элементов:
AB=CD
ч.т.д.
Задача 2:
1. Рассмотрим треугольники ABD и BCD:
AD=BC- по условию
AB=CD- по условию
BD - общая => треугольник ABD равен треугольнику BCD
2. Из рав-ва треугольников следует рав-во соответствующих элементов:
Угол BDC равен углу DBA
3. Рассмотрим треугольники ABF и CDE:
AB=CD- по условию
Угол EDC (BDC) равен углу FBA (DBA)- по доказанному => треугольник ABF равен треугольнику CDE- по гипотенузе и острому углу
4. Из рав-ва треугольников следует рав-во соответствующих элементов:
BF=ED, AF=EC
ч.т.д.
Задача 1:
1. Рассмотрим треугольники ABD и ACD:
Угол 1 равен углу 2 -по условию
AD- общая => треугольник ABD равен треугольнику ACD по гипотенузе и острому углу
2. Из рав-ва треугольников следует рав-во соответствующих элементов:
AB=CD
ч.т.д.
Задача 2:
1. Рассмотрим треугольники ABD и BCD:
AD=BC- по условию
AB=CD- по условию
BD - общая => треугольник ABD равен треугольнику BCD
2. Из рав-ва треугольников следует рав-во соответствующих элементов:
Угол BDC равен углу DBA
3. Рассмотрим треугольники ABF и CDE:
AB=CD- по условию
Угол EDC (BDC) равен углу FBA (DBA)- по доказанному => треугольник ABF равен треугольнику CDE- по гипотенузе и острому углу
4. Из рав-ва треугольников следует рав-во соответствующих элементов:
BF=ED, AF=EC
ч.т.д.
Трапеция равнобедренная AB=CD.
AC=6√3
∠A=60°
В равнобедренной трапеции прилежащие к боковой стороне углы дают в сумме 180°.
∠B=180°-60°=120°
Диагональ по условию делит острый угол ∠А пополам, значит ∠BAC=30°.
Рассмотрим ΔABC:
Сумма внутренних углов треугольника 180°.
∠ABC+∠BAC+∠ACB=180°
120°+30°+∠ACB=180°
∠ACB=30°
Так как ∠ACB=∠BAC, ΔACB – равнобедренный. Значит боковые стороны и меньшее основание равны, AB=CD=BC.
По теореме синусов, стороны пропорциональны синусам противолежащего угла.
AB=6
Следовательно, AB=BC=CD=6.
∠B=∠C, потому что это равнобедренная трапеция.
∠ACD=∠C-∠ACB
∠ACD=120°-30°=90°
Значит ΔACD – прямоугольный, где угол ∠ACD – прямой.
По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов.
AD²=AC²+CD²
P=AB+BC+CD+AD
P=6+6+6+12=30