∠А = 36,34°; ∠В = 117,28°; ∠С = 26,38°.
Объяснение:
1) По теореме косинусов:
a^2 = b^2 + c^2 + 2bc*cos (α),
откуда
cos (α) = (b^2 + c^2 - a^2) / 2bc .
2) Обозначим углы и стороны:
∠ А = α
∠ В = β
∠ С = Δ
а = ВС (лежит против угла α)
b = АС (лежит против угла β)
с = АВ (лежит против угла Δ).
3) cos (α) = (b^2 + c^2 - a^2) / 2bc = (6^2 + 3^2 - 4^2) / (2*6*3) =
(36+9-16)/36 = 29/36 = 0,8055 55
По таблице косинусов находим, какой это угол:
α = arccos 0,8055 55 = 36,34°.
∠А = 36,34°.
4) Находим второй острый угол (он лежит против стороны 3 см и должен получиться меньше угла α):
cos (Δ) = (b^2 + а^2 - с^2) / 2ab = (6^2 + 4^2 - 3^2) / (2*6*4) =
(36+16-9)/48 = 43/48 = 0,8958 33
По таблице косинусов находим, какой это угол:
α = arccos 0,8958 33 = 26,38°.
∠С = 26,38°.
5) Находим третий угол:
180 - 36,34 - 26,38 = 117,28°.
∠В = 117,28°.
ответ: ∠А = 36,34°; ∠В = 117,28°; ∠С = 26,38°.
если рассмотреть отрезки, касательных до сторон угла, то точки касания разобьют на, например, х и у, гипотенузу, тогда точки касания катетов соответственно разобьют катеты на отрезки (х+r) и (y+r), и, следовательно, периметр будет равен х+r+у+r+х+у, здесь а=x+r, в=у+r; с=х+у. но тогда периметр равен 2х+2r+2у=2(х+у)+2r=2(с+r)
Если теперь приравнять полученные преиметры. т.е. 2с+2r=а+в+с,
разделить левую и правую части на 2, то получим с+r=(а+в+c)/2, и отнять с от левои и правой части, то получимr=(а+в+с)/2-с,
r=(а+в-с)/2