№3. Из одной точки к данной прямой проведены две равные наклонные. Расстояние между их основаниями 15,6см. Определите проекции наклонных на данную прямую
Только потому, что мне очень нравятся такие вот штуки. Можно сформулировать эту задачу так - к одной из сторон квадрата "пристроен" прямоугольный треугольник, так что сторона квадрата является его гипотенузой. И далее - по тексту. Можно взять три "точно таких же" треугольника, и пристроить к другим сторонам квадрата аналогичным образом, так, что получится больший квадрат, в который вписан меньший квадрат, так, что все вершины его лежат на сторонах большего квадрата. Центры этих квадратов совпадают, потому что, если ПОВЕРНУТЬ всю эту "конструкцию" на 90° вокруг центра меньшего квадрата O, то фигура "перейдет в себя". Поэтому AO - диагональ большого квадрата, то есть - биссектриса угла BAC. Ну, теперь, если напрячься, и разделить 90° пополам, то получится 45°.
Только потому, что мне очень нравятся такие вот штуки. Можно сформулировать эту задачу так - к одной из сторон квадрата "пристроен" прямоугольный треугольник, так что сторона квадрата является его гипотенузой. И далее - по тексту. Можно взять три "точно таких же" треугольника, и пристроить к другим сторонам квадрата аналогичным образом, так, что получится больший квадрат, в который вписан меньший квадрат, так, что все вершины его лежат на сторонах большего квадрата. Центры этих квадратов совпадают, потому что, если ПОВЕРНУТЬ всю эту "конструкцию" на 90° вокруг центра меньшего квадрата O, то фигура "перейдет в себя". Поэтому AO - диагональ большого квадрата, то есть - биссектриса угла BAC. Ну, теперь, если напрячься, и разделить 90° пополам, то получится 45°.
Можно сформулировать эту задачу так - к одной из сторон квадрата "пристроен" прямоугольный треугольник, так что сторона квадрата является его гипотенузой. И далее - по тексту.
Можно взять три "точно таких же" треугольника, и пристроить к другим сторонам квадрата аналогичным образом, так, что получится больший квадрат, в который вписан меньший квадрат, так, что все вершины его лежат на сторонах большего квадрата.
Центры этих квадратов совпадают, потому что, если ПОВЕРНУТЬ всю эту "конструкцию" на 90° вокруг центра меньшего квадрата O, то фигура "перейдет в себя".
Поэтому AO - диагональ большого квадрата, то есть - биссектриса угла BAC.
Ну, теперь, если напрячься, и разделить 90° пополам, то получится 45°.