АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
S=8*10*sin 60=80*sqrt(3)/2=40sqrt(3)
sqrt(3) корень квадратный
2.)S параллелограмма = 2S треугольника = 2 * 1/2 * a * b * sin a = 8 * 6 * sin 45 = 48 * √2/2 = 24√2
3.)Пусть АВСD - данная трапеция, AB=6, AD=2*корень(3), угол АВС=120 градусов,
проведем высоту ВК
тогда угол KBC=120-90=30 градусов
угол С=90-30=60 градусов
BK=AD=2*корень(3)
DK=AB=6
по соотношениям в прямоугольном треугольнике
BK/CK=tg C
СК=BK/ tg C
CK=2*корень(3)/tg 60=2*корень(3)/корень(3)=2
CD=CK+DK=6+2=8
Площадь трапеции равна произведению ее высоту на полусумму ее оснований
S=(AB+CD)/2 *AD
S=(6+8)/2*2*корень(3)=14*корень(3)
4.)роведём высоту из верхнего угла на нижнее основание - в точку К
Оба нижних угла будут = 180 - 150 = 30 гр Тангенс 30 = 1/корень из 3Отрезок ак = высота / тангенс 30 = 3 Нижнее основание = 3+5+3 = 11
Средняя линия = (11 +5) /2 = 8 Площадь = 8 * корень из 3