Для определения площади параллелограмма достаточно трёх точек.
Площадь равна модулю векторного произведения векторов АВ и ВС.
Находим векторы ВА и ВС.
ВА = (-3-2; 1-6) = (-5; -5),
ВС = (7--2; -1-6) = (5; -7)
Находим векторное произведение ВА и ВС.
i j k| i j
-5 -5 0| -5 -5
5 -7 0| 5 -7 = 0i + 0j + 35k - 0j - 0i + 25k = 0i + 0j + 60k.
Найдем модуль вектора:
|c| = √(cx² + cy² + cz²) = √(0² + 0² + (-60)²) = √(0 + 0 + 3600) = √3600 = 60
Найдем площадь параллелограмма:
S = 60.
ответ: 54 см
Объяснение:
Проведем прямую ВК, параллельную диагонали АС, К - точка пересечения этой прямой с прямой AD.
ВК ║АС, AD ║ ВС, значит КВСА - параллелограмм, ⇒
АК = ВС = 5 см,
ВК = АС = 9 см.
Если ВН высота трапеции, то
Sabcd = 1/2 (AD + BC) · BH
Рассмотрим ΔКВD:
KB = 9 см, BD = 12 см, KD = КА + AD = 5 + 10 = 15 см, ВН является высотой треугольника.
Skbd = 1/2 KD · BH = 1/2 (KA + AD) · BH = 1/2 (BC + AD) · BH
Сравнивая формулу площади трапеции и площади треугольника видим, что
Sabcd = Skbd.
Найдем площадь треугольника KBD по формуле Герона.
p = (KB + BD + KD)/2 = (9 + 12 + 15)/2 = 18
Sabcd = 54 см²