А) Сумма острых углов в прямоугольном треугольнике = 90°.
Пусть один угол из них = х, тогда второй острый угол = 90° - х
б) сумма внешних углов = 180°
Для угла = х внешний угол = 180° -х
для другого угла внешний угол = 180° -(90° -х) = 180° - 90° +х= 90° +х
в) (180° - х)/(90° +х) =12/15
(180° - х)/(90° +х) =4/5
5(180° - х) = 4(90° +х)
900 - 5х = 360 + 4х
9х = 540
х = 60° ( это один острый угол данного прямоугольного треугольника)
90° - 60° = 30°( это второй острый угол)
ответ: 60° и 30°
авсd - параллелограмм.
диагонали параллелограмма точкой пересечения делятся пополам.
пусть о - точка пересечения ас и вd.
тогда о - середина ас и середина вd.
найдем координаты середины диагонали ас:
х₀ = (3 + 1)/2 = 2;
у₀ = (- 4 + 2)/2 = - 1;
z₀ = (7 + (- 3))/2 = 2.
эти же координаты имеет середина диагонали вd.
найдем координаты d(х; у; z):
(- 5 + х)/2 = 2 (3 + у)/2 = - 1 (- 2 + z)/2 = 2
- 5 + х = 2 · 2 3 + у = - 1 · 2 - 2 + z = 2 · 2
- 5 + х = 4 3 + у = - 2 - 2 + z = 4
х = 4 + 5 у = - 2 - 3 z = 4 + 2
х = 9 у = - 5 z = 6