Раз высота конуса 6, а образующая наклонена под углом 30 градусов к плоскости основания, то радиус R основания получается R = 6 / tg(30) = 6 * корень(3) Знаем радиус - находим площадь основания S = пи * R^2 = пи * 36 * 3 (пока не будем умножать 36 на 3, оставим в таком виде) Всё имеем для вычисления объёма V = 1/3 * S * H = 1/3 * пи * 36 * 3 * 6 = пи * 36 * 6 = 216 * пи = примерно 678,58 см3.
Вторая же задачка прикольная у тебя, если ты правильно переписала условие, конечно. Фишка тут в том, что образующая задана корень(5) - это примерно 2,23 см, а радиус основания задан 3 см. Такой конус не существует. У любого конуса длина образующей должна быть больше, чем радиус основания, а у тебя меньше. Если условие переписала правильно, то передавай привет учительнице.
1. 1) у тебя дан равнобедренный треугольник, так как обе стороны равны. 2) высота делит его на два прямоугольных треугольника. а ещё она делит основу на пополам // два равных отрезка. 3) берёшь любой из этой пары и находишь неизвестный катет по небезизвестной теореме пифагора: квадрат гипотенузы равняется суме квадратов катетов. 4)отсюда находишь катет этот алгоритм пригодится, если нужно найти высоту проведённую к основе. а в остальном не знаю 2. можно поступить хитростью: найди периметр и площадь основного, а затем умнож их на 1/4. так ты найдёшь параметры треугольника, подобного данному. (я не уверен, что так можно, но попробуй). предлагаю другой способ, если что: попробуй найти 1/4 каждой стороны, а затем найти площадь и периметр треугольника с новонайденными сторонами, таким образом найдёшь вышеупомянутые параметры подобного треугольника,т.е. тоже самое
Раз высота конуса 6, а образующая наклонена под углом 30 градусов к плоскости основания, то радиус R основания получается
R = 6 / tg(30) = 6 * корень(3)
Знаем радиус - находим площадь основания
S = пи * R^2 = пи * 36 * 3 (пока не будем умножать 36 на 3, оставим в таком виде)
Всё имеем для вычисления объёма
V = 1/3 * S * H = 1/3 * пи * 36 * 3 * 6 = пи * 36 * 6 = 216 * пи = примерно 678,58 см3.
Вторая же задачка прикольная у тебя, если ты правильно переписала условие, конечно. Фишка тут в том, что образующая задана корень(5) - это примерно 2,23 см, а радиус основания задан 3 см. Такой конус не существует. У любого конуса длина образующей должна быть больше, чем радиус основания, а у тебя меньше. Если условие переписала правильно, то передавай привет учительнице.