На сторонах треугольника АВС АВ, ВС, СА взяты соответственно точки М, N, P таким образом. что выполняется соотношение АМ:АВ=ВN:NB=СР:СА=1:3. Найдите площадь треугольника АВС, если площадь треугольника МNP=2.
———————
ответ D) 6
Объяснение: Пусть АВ=с, ВС=а, АС=b
Т.к. короткие части равны 1/3 каждой стороны, то АМ=с/3, ВN=a/3, CP=b/3. Соответственно вторые части сторон равны по 2/3 от длины каждой.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны. α - угол между ними. Следствие из этой формулы:
Площади треугольников, имеющих одинаковый угол, относятся как произведения сторон, образующих этот угол.
Примем площадь ∆ АВС=Q.
Тогда Ѕ(МАР):Ѕ(АВС)=[(с/3)•2b/3]:c•b=Q•2/9
Аналогично вычисления площадей ∆ МВN и ∆ PNC дадут их величину Q•2/9 (проверьте)
Сумма площадей этих треугольников 3•Q•2/9=Q•2/3 =>
Q-2Q/3=2
Q/3=2 => Q=3•2=6 (ед. площади)
Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.
Объяснение:
1) Если это боковые стороны, то тогда длина третьей стороны (основания):
36 - 26 = 10 см.
А боковые стороны равны:
26 : 2 = 13 см
2) Если это одна боковая сторона и основание, то тогда составляем систему уравнений и решаем её.
х - основание,
у - боковая сторона,
х + у = 26 - это первое уравнение,
х + 2у = 36 - это второе уравнение.
Умножаем первое уравнение на 2 и из полученного результата вычитаем второе уравнение, получаем:
2х + 2у = 52 - домножили первое уравнение на 2
2х - х + 2у- 2у = 52 -36
х = 16 см - это основание,
тогда боковые стороны равны:
(36 - 16) : 2 = 20 : 2 = 10 см
Так как сумма 2-х сторон больше длины основания, то стороны пересекутся, значит, такой треугольник существует.
Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.