М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Paxxan
Paxxan
30.05.2023 10:05 •  Геометрия

Наклоная это Любой отрезок соеденяющий данную точку с другой точкой
Любой отрезок соеденяющий данную точку прямой являющийся перпендикуляром к прямой
Любой отрезок соеденяющий данную точку с точкой прямой и не являющийся перпендикуляром к прямой

👇
Ответ:
leeJLZeel
leeJLZeel
30.05.2023

3

Объяснение:

4,8(35 оценок)
Ответ:
SeViK02
SeViK02
30.05.2023

Наклонной, проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.

4,8(89 оценок)
Открыть все ответы
Ответ:
Lina905
Lina905
30.05.2023

1.  R - радиус описанной окружности

a-сторона правильного треугольника

стороны правильного треугольника равны 45/3=15см

a/sin(pi/3)=2*R

так же радиус можно найти по формуле R=b/(2*sin(pi/N))

b- сторона правильного многоугольника

N- количсетво углов в многоугольнике (равно количеству сторон)

приравниваем две формулы, выражаем b.

 

 

2. площадь квадрата равна квадрату его стороны, значит сторона квадрата равны корню квадратному из 72

опять используем известную уже формулу радиуса описанной окружности, R=b/(2*sin(pi/N)) и найдём радиус окружности.

площадь круга равна pi*R^{2}  (число пи умноженнное на квадрат радиуса)

 

4. необходимо использовать формулы из задачи 1.

 

5.  площадь вписанного 6_угольника S=(3sqrt{3}*a^{2})/2, отсюда находим сторону а и используем ее в следуещей формуле, откуда мы находим радиус окружности R=а/(2*sin(pi/N))

l=2*pi*R - длина окружности

 

6.  площадь сектора находится по формуле S=frac{pi*R^{2}*alpha}{360}

 

 

4,6(87 оценок)
Ответ:
niavente
niavente
30.05.2023

A1. Две прямые на плоскости называются параллельными, если они:

4) не пересекаются

А2. Один из признаков параллельности двух прямых гласит:

Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны

А3. Выберите утверждение, являющееся аксиомой параллельных прямых:

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной

А4. Если две параллельные прямые пересечены секущей, то:

Соответственные углы равны

А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:

Она перпендикулярна и другой

А6. Всякая теорема состоит из нескольких частей:

Условия и заключения

А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:

Накрест лежащие, соответственные, односторонние

А8. Аксиома – это:

Положение геометрии, не требующее доказательства

А9. Выберите утверждение, которое является признаком параллельности прямых:

Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны

А10. Если прямая не пересекает одну из двух параллельных прямых, то:

Другую прямую она тоже не пересекает

или

С другой прямой она совпадает

4,6(55 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ