В сечении имеем равнобедренный треугольник KSM. Основание его KM равно половине диагонали основания: КМ = 3√2/2. KS и MS - это высоты h1 боковых граней. KS = MS = √(5² - (3/2)²) = √(25 - (9/4)) = √22,75 ≈ 4,7697. Искомую площадь треугольника KSM можно определить двумя - по формуле Герона, - по высоте h2 и основанию.
По формуле Герона: р = (2*4,7697 + (3√2/2))/2 ≈ 5,8303562. S = √(p(p-a)(p-b)(p-c). Подставив данные, получаем S = 4,93235491 кв.ед.
Высота h2 сечения равна: h2 =√(4,7697² - ((3√2/2)/2)²) ≈ 4,650269. S = (1/2) KM*h2 = (1/2)(3√2/2)* 4,650269 ≈ 4,932355 кв.ед.
Формула:
По рисунку; AK² = AB * AC
Объяснение:
если из одной точки к окружности проведены секущие, то все произведения отрезков секущих и их внешних частей равны.