Некий цилиндр с периметром основания 15,7 см. имеет объëм равный 141.3 см^3. Вычислить площадь боковой поверхности этого цилиндра. с рисунком и решением !
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Объяснение:
1) ∠BCA = 180° - 90° - 44° = 90° - 44° = 46°
∠DCE = 180° - 90° - 46° = 90° - 46° = 44°
∠BCD = 180° - 46° - 44° = 180° - 90° = 90° ⇒ BC⊥CD
ч. т. д.
2) ∠ACE = 180° - ( (180° - 90° - 55°) + (180° - 90° - 35°) ) = 180° - (35° + 55°) = 180° - 90° = 90°
3) sin∠BCH = BH / BC ; BC = BH / sin∠BCH ; BC = 4 / sin30° = 4 / 0,5 = 8
CH = √(BC² - BH²) = √(64 - 16) = √48 = 4√3
sin∠A = CH / AC ; AC = CH / sin∠A ; AC = 4√3 / sin30° = 8√3
AH = √(AC² - CH²) = √(192 - 48) = √144 = 12
ответ : 12 см.
7) Если BD - биссектриса ∠АВС, то ∠ABD = ∠DBC. ∠A = ∠C
∠BDA = 180° - ∠A - ∠ABD , ∠BDC = 180° - ∠C - ∠DBC.
Учитывая вышестоящие равенства, приходим к тому, что ∠BDA = ∠BDC ⇒ DB - биссектриса ∠АDС.
ч. т. д.