Построение:
1) Соединим точки КМ;
2) Грани KLMN и K₁L₁M₁N₁ — параллельны, поэтому построим прямую в плоскости K₁L₁M₁N₁ параллельную прямой КМ через точку М₁;
3) В точке пересечения этой прямой и ребра отметим точку, данная точка уже есть — это точка К₁
Доказательство:
1) Противоположные стороны построенного сечения являются противоположными ребрами параллелепипеда, значит они равны и параллельны;
2) Вторая пара сторон является диагоналями противоположных (граней параллелепипеда, значит они также равны и параллельны;
3) Следовательно построенные сечения являются параллелограммами, что и требовалось доказать.
В плоскости К1L1M1N1 линией сечения заданной плоскостью будет отрезок РС, параллельный диагонали L1N1 и равный её половине.
Диагональ параллелепипеда К1М и заданная плоскость пересекутся в диагональной плоскости КК1М1М по линии КД. Точка Д - это середина отрезка РС. Точка Д делит диагональ К1М1 в отношении 1:3.
В сечении получили подобные треугольники К1ЕД и КЕМ.
Коэффициент подобия равен 3/4.
В таком отношении заданная секущая плоскость разделит диагональ К1М.
ответ: плоскость сечения делит диагональ МК1 в отношении 3:4.
ответ: 180см²
Объяснение:
Дано:
а=12см
в=10см
h1-h2=3cм
S-?
Обозначим неизветсную высоту h1 через х, тогда h2 будет х+3
Площадь параллелограмма равна произвдедению основания на высоту. Составим уравнение:
а*х=в*(х+3)
Подставим значения:
12*х=10*(х+3)
12х=10х+30
2х=30
х=15
S=12*15=10*18=180см²