А(18√3; 18)
Пошаговое объяснение:
Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
Итак, запишем координаты точки А: А(18√3; 18)
Объяснение:
Так как все ребра тетраэдра равны, то мы имеем правильный тетраэдр (все грани правильные треуг.). На середине ребра АD обозначим точку О. Точка О и В лежат в одной плоскости ADB, следовательно, плоскость сечения пересечет плоскость ADB по прямой ОВ. Аналогично проводим прямую через т. С и О. СОВ-искомое сечение. Сторона CD=2cм (нам уже известно), так как О-середина АВ, то АО=OD=1см. ОС и ОВ вяляются медианами и высотами треуг. АСD и ABD соответственно. По теореме Пифагора ОС=ОВ=√(4-1)=√3см Р=ОС+ОВ+СВ=2+√3+√3=2+2√3см
Объяснение:
Объяснение:
Пирамида правильная, значит основание - квадрат, а высота проецируется в точку пересечения диагоналей квадрата.
Н - середина CD, тогда SH - апофема пирамиды.
SH = 4√2
SH⊥CD, OH - проекция SH на плоскость основания, значит ОН⊥CD по теореме, обратной теореме о трех перпендикулярах.
∠SHO = 45° - линейный угол двугранного угла при ребре основания.
Рассмотрим ΔSOH:
∠SOH = 90°, ∠SHO = 45°, ⇒ ∠HSO = 45°, треугольник равнобедренный.
SO = OH = x
По теореме Пифагора:
SH² = SO² + OH²
(4√2)² = x² + x²
2x² = 32
x² = 16
x = 4 (x = - 4 не подходит по смыслу задачи)
SO = 4 - высота пирамиды
AD = 2OH = 2 · 4 = 8, так как ОН - средняя линия треугольника ACD.
Sabcd = AD² = 8² = 64
Объем пирамиды: