Допустим, что наша трапеция АВСD, где АВ и СD это стороны прямоугольной трапеции. ВС - это меньшее основание, а АD - это большее основание трапеции. Угол А и угол В нашей трапеции прямые и равны 90°, поэтому сторона АВ является и высотой трапеции.
Средняя линия это КМ.
АВ =12см, СD=20 см, диагональ АС = 13 см.
Треугольник АВС - прямоугольный, угол В = 90°, АВ и ВС - это катеты, а АС - это гипотенуза.
По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, поэтому
АС²=АВ²+ВС²
ВС²=13²-12²
ВС²=169-144
ВС²=25
ВС=5см.
Опустим с вершины С нашей трапеции АВСD высоту СН на основание АD.
СН=АВ=12 см, поскольку это две высоты трапеции.
Рассмотрим треугольник СНD, он треугольный, угол Н равен 90°, СН и НD - это катеты, а СD - это гипотенуза.
По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, поэтому
СD²=CН²+НD²
20²=12²+НD²
400=144+НD²
НD²=400-144
НD²=256
НD=√256
НD=16см
Поскольку ВС и АD - это основания трапеции, значит они параллельны между собой. При этом АВ и СН это высоты трапеции, они тоже между собой параллельны, а поскольку высота на основание трапеции ложится под углом 90°, значит АВСН - это прямоугольник.
А поскольку АВСН - это прямоугольник, значит ВС=АН=5см.
АD= АН+НD=5+16=21 см.
Длина средней линии трапеции равна полусумме оснований, значит
КМ= (ВС + АD)/2 = (5+21)/2=26/2=13 см.
ответ: Длина средней линии трапеции равна 13см
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301