ответ: Естественно
Объяснение: д
Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
68/(15*пи) примерно 1,44
Объяснение: Диагонали разбивают ромб на 4 равных прямоугольных треугольника. Согласно условию мы можем сказать, что катеты этих треугольников 3 условных единицы и 5 условных единиц. Дальше просто 3 и 5. Сторона ромба (гипотенуза) равна по теореме Пифагора sqrt(34)(корень из 34). Площадь ромба 3*5*4/2=30. Высота каждого треугольника : суть, радиус вписанной окружности r. Очевидно ,
r*sqrt(34)=5*3 (слева и справа удвоенные площади треугольников). r=15/sqrt(34)
Площадь окружности пи*225/34. Искомое отношение
30*34/(225*пи)=68/(15*пи) примерно 1,44
Да
Объяснение:
Ну тут по правилу