PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
Условие должно быть таким: Из точки А к данной плоскости альфа проведены перпендикуляр АА1 и две наклонные АВ и АС. СА1=4, угол АВА1=30°, угол АСА1=60°, а угол между наклонными 90°. Найти расстояние между основаниями наклонных. Решение. Из прямоугольного треугольника АСА1: tgC=AA1/A1C (отношение противолежащего катета к прилежащему). Тогда АА1=А1С*tg60° = 4√3. АС=√(АА1²+А1С²)=√(48+16)=8. (Пифагор) Из прямоугольного треугольника АВА1: АВ=2*АА1 = 8√3 (АА1 - катет против угла 30° и равен половине гипотенузы АВ). Из прямоугольного треугольника АВС (<ВАС=90° - дано): ВС=√(АВ²+АС²)=√(64+192)=16. ответ: расстояние ВС между основаниями наклонных равно 16.