1. Если принять значение первого угла за одну часть общего угла, соответственно второй угол будет равен четырем частям (из условия задачи), следовательно 4-1=3, а по условию задачи, их разница равна 108. Теперь делим 108 на 3, получаем, что одна часть общего угла равна 36 градусам, следовательно первый угол будет равен 36 градусам (1*36), а второй 144 градуса (4*36). В сумме, они дают 180 градусов, из чего можно сделать вывод, что прямые, которые пересекает прямая, образующая эти углы, параллельны между собой.
2. Углы АВС и ВСД равны, так как они накрест лежащие. Отсюда делаем вывод, что треугольники АВС и ВСД равны по двум сторонам (АВ=СД и СВ - общая) и углу между ними.
Дано: Δ АВС∠С = 90°АК - биссектр.АК = 18 смКМ = 9 смНайти: ∠АКВРешение. Т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) К на гипотенузу АВ и обозначим это расстояние КМ. Рассмотрим полученный Δ АКМ, Т.к. ∠АМК = 90°,то АК гипотенуза, а КМ - катет. Поскольку, исходя из условия, катет КМ = 9/18 = 1/2 АК, то ∠КАМ = 30°. Т.к. по условию АК - биссектриса, то ∠САК =∠КАМ = 30° Рассмотрим ΔАКС. По условию ∠АСК = 90°; а∠САК = 30°, значит, ∠АКС = 180° - 90° - 30° = 60° Искомый ∠АКВ - смежный с ∠АКС, значит, ∠АКВ = 180° - ∠АКС = 180° - 60° = 120° ответ: 120°