можно было и больше поставить, задачка прикольная).. итак поехали:
стороны основания 5, 12 и 13 - это стороны прямоугольного треугольника
(25+144=169 теорема пифагора), а значит радиус вписаной окружности в основание равен р=(5+12-13)/2=2.. есть такая формула)
т.к. угол наклона у граней одинаковый, то и высоты у треугольников составляющих эти грани тоже будут одинаковы и будут составлять с высотой пирамиды и радиусом вписаной окружности в основание одинковые прямоугольные треугольники, и будут равны:
Н=корень( (4*корень(2))^2 + 2^2 ) = 6
площадь боковой поверхности пирамиды равна сумме площадей её граней, найдём каждую полупроизведением высот на их основания:
S= 5*6/2+12*6/2+13*6/2 = 15+36+39 = 90

Периметр четырехугольника АСЕК равен 54 ед.
Объяснение:
В треугольнике ABC, AB = 30, AC = 20, BC = 25; AE - биссектриса угла A. Из точки E проведена параллельная прямая к стороне AC, которая пересекает сторону AB в точке K. Найдите периметр четырехугольника ACEK.
Дано: ΔАВС;
AB = 30, AC = 20, BC = 25;
AE - биссектриса;
ЕК || AC.
Найти: Р(АСЕК)
1. AE - биссектриса;
Свойство биссектрисы:
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.Пусть ЕВ = х, тогда ЕС = 25 - х
⇒ EB = 15; EC = 10.
2. Рассмотрим ΔКВЕ и ΔАВС.
Если две стороны треугольника пересекает прямая, параллельная третьей стороне, то она отсекает треугольник, подобный данному.⇒ ΔКВЕ ~ ΔАВС
Запишем отношения сходственных сторон:
3. Рассмотрим ΔАКЕ.
∠1 = ∠2 (условие)
∠3 = ∠2 (накрест лежащие при КЕ || AC и секущей АЕ)
⇒ ∠1 = ∠3
Если в треугольнике два угла равны, то он равнобедренный.⇒ АК = КЕ = 12
4. Рассмотрим АСЕК.
Периметр - сумма длин всех сторон.Р(АСЕК) = АК + КЕ + ЕС + АС = 12 + 12 + 10 + 20 = 54
Периметр четырехугольника АСЕК равен 54 ед.