Дано: SABC - пирамида, АВ=ВС=10см, АС=12см, боковые грани образуют с основанием углы 30 градусов. Найти: высоту SO. Построение. К основанию треугольника АВС проведем высоту ВН, которая будет являться и медианой и биссектрисой, так как треугольник равнобедренный. Отрезок SH также является высотой, так как треугольник ASC равнобедренный. Значит, угол SHB - заданный в условии двугранный угол. Высота пирамиды проецируется на основание в точку О, являющуюся центром вписанной в треугольник АВС окружности, так как все грани пирамиды наклонены к основанию под одинаковым углом. Решение: Рассмотрим прямоугольный треугольник OSH:
Неизвестным остается отрезок НО, являющийся радиусом ранее упомянутой окружности. Площадь треугольника равна половине произведения его основания на высоту, проведенную к основанию. С другой стороны площадь треугольника равна произведению его полупериметра на радиус вписанной окружности. Приравнивая эти площади, получим:
BH найдем из треугольника АВН по теореме Пифагора, учитывая, что АН - половина АС.
Высота основания правильной треугольной пирамиды равна 6 см, а двугранный угол при стороне основания равен 45 градусов. Найти площадь поверхности пирамиды и расстояние от вершины основания до противоположной боковой грани. Сделаем рисунок. Основание высоты правильной треугольной пирамиды - точка пересечения высот основания, или. иначе, центр вписанной в правильный треугольник окружности. Площадь поверхности пирамиды равна сумме площадей ее основания и трех боковых граней. Площадь основания правильного треугольника находят по формуле S=(a²√3):4 Боковые грани правильной пирамиды - равнобедренные треугольники. Площадь боковой грани - половина произведение ее высоты на сторону основания. S грани=аh:2 Двугранный угол при стороне основания равен линейному углу между апофемой МН и высотой АН основания. АВ=ВС=АС=АН:sin (60º)=6:[(√3):2]=4√3 S осн=(4√3)²√3):4=(16*3*√3):4=12√3 см² Апофема МН, как гипотенуза равнобедренного прямоугольного треугольника МОН, равна ОН√2 ОН=АН:3=2 см МН=2√2 Sбок= 3*МН*ВС:2=(3*2√2)*4√3):2 Sбок=12√6 S полн=S осн+Sбок=12√3 см²+12√6=12√3(1+√2)=≈50,178 см² Вернемся к рисунку. Расстояние от вершины основания до противоположной боковой грани -перпендикуляр от вершины, проведенный к плоскости боковой грани. Ясно, что расстояния от любой вершины осноания до противоположной ей грани равны. Найдем расстояние от вершины В до плоскости грани АМС. ЕМ - высота треугольника АМС. Искомым расстоянием будет перпендикуляр ВК к проекции высоты ВЕ основания на плоскость АМС, т.е. к прямой ЕМ. Так как двугранный угол у основания равен 45º, то треугольник ЕКВ - прямоугольный и равнобедренный. Искомое расстояние КВ=ВЕ*sin(45º )=6√2):2=3√2 см
ответ:Для знаходження решти параметрів трикутника нам знадобиться закон синусів:
a/sin(α) = b/sin(β) = c/sin(γ)
Для знаходження β і γ спочатку знайдемо sin(α):
sin(α) = sin(60°) = √3/2
Тоді за законом синусів:
b/sin(β) = c/sin(γ)
sin(β) = b*sin(γ)/c
sin(γ) = c*sin(β)/b
Тепер знайдемо sin(β):
sin(β) = bsin(α)/a = 4(√3/2)/a = 2√3/a
Знайдемо γ:
sin(γ) = csin(α)/a = 5(√3/2)/a = (5√3)/2a
γ = arcsin[(5√3)/2a] ≈ 84.3°
Знайдемо β:
sin(β) = bsin(γ)/c = 4(5/2a)/5 = 2/a
β = arcsin[2/a] ≈ 30.6°
Залишилось знайти третю сторону. Знову за законом синусів:
a/sin(α) = b/sin(β) = c/sin(γ)
a/(√3/2) = 4/(2/a) = 5/[(5√3)/2a]
a = 2b*sin(β) = 8/√3 ≈ 4.62
Тож, маємо:
a ≈ 4.62
β ≈ 30.6°
γ ≈ 84.3°
Объяснение: