М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kirapri32
kirapri32
18.04.2022 20:13 •  Геометрия

27. Описати розв’язування прямокутних трикутників: а) за гіпотенузою та гострим кутом
б) за катетом та гострим кутом,
в) за гіпотенузою та катетом,
г) за двома катетами

👇
Ответ:
andrei182
andrei182
18.04.2022

Объяснение:

а) За гіпотенузою та гострим кутом:

Для розв'язування прямокутного трикутника за гіпотенузою (с) та гострим кутом (α), можна скористатися тригонометричними функціями синуса, косинуса та тангенса. Звичайно, гіпотенуза повинна бути відомою стороною, а гострий кут - відомим кутом. Потім можна використати наступні формули:

sin(α) = протилежний катет / гіпотенуза

cos(α) = прилеглий катет / гіпотенуза

tan(α) = протилежний катет / прилеглий катет

Таким чином, можна знайти значення протилежного катета або прилеглого катета, використовуючи тригонометричні функції.

б) За катетом та гострим кутом:

Для розв'язування прямокутного трикутника за катетом (а) та гострим кутом (α), можна використовувати тригонометричні функції синуса, косинуса та тангенса. Вирази будуть наступними:

sin(α) = протилежний катет / гіпотенуза

cos(α) = прилеглий катет / гіпотенуза

tan(α) = протилежний катет / прилеглий катет

За відомим значенням катета і гострого кута, можна використати ці формули для знаходження значень протилежного катета, прилеглого катета або гіпотенузи.

в) За гіпотенузою та катетом:

Якщо відомі гіпотенуза (с) та один катет (а) прямокутного трикутника, то другий катет (b) можна знайти, використовуючи теорему Піфагора:

b^2 = c^2 - a^2

Значення другого катета можна отримати взяття квадратного кореня з обох боків рівняння.

г) За двома катетами:

Якщо відомі обидва катети (

а і b) прямокутного трикутника, то гіпотенузу (с) можна знайти, також застосовуючи теорему Піфагора:

c^2 = a^2 + b^2

Значення гіпотенузи можна отримати взяттям квадратного кореня з обох боків рівняння.

4,7(97 оценок)
Открыть все ответы
Ответ:
WhiteMIA131
WhiteMIA131
18.04.2022
Соединим концы В,С и Д отрезков АВ, АС, АД и получим плоскость ВСД.
Проведя плоскость α через середины отрезков , мы получили отрезки В1С1, С1Д1 и В1Д1.
В треугольнике АВС  отрезок В1С1 - средняя линия, поэтому В1С1║ВС
В треугольнике АСД отрезок С1Д1 является средней линией, поэтому С1Д1 ║ СД.
Отрезки С1Д1 и В1С1, принадлежащие плоскости α, пересекаются в точке С1. Они параллельны отрезкам ВС и  СД, принадлежащим плоскости ВСД, и имеющим точку пересечения С.
Плоскости параллельны друг другу, если две пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости.
Следовательно, плоскость α параллельна плоскости ВСД
4,4(35 оценок)
Ответ:
DFV7
DFV7
18.04.2022
Я не знаю как вставить сюда рисунок, ну и ладно, тогда вникай. Походу, что эти биссектрисы пересекаются.
В прямоугольнике все углы равны 90°, а противоположные стороны равны ⇒АВ=СД=6, ВС=АД=11
Биссектрисы ВХ и CY делят угол на равные углы 45°
Рассмотрим ΔХАВ и ΔYCД:
∠АВХ=∠ДCY = 45° (по док. выше)
АВ=АХ(Потому что ∠AXB(1)=∠DYC(2) = 45° (по св парал. прямых; ∠1 и ∠ 2-накрестлеж., потому что лежат  на парал. прямых при сек. ВX), а значит, что это треугольник равнобедренный)⇒ВА=СД
АХ=ДY (я здесь много что написал, но я надеюсь, что ты разбирешься и сам напишешь пограмотнее)
Из этого всего мы доказали, что  ΔХАВ и ΔYCД равны (по двум сторонам и углу между ними)
Из этого доказательства мы выяснили, что АХ=ДY = 6
Но вся сторона АД = 11, получается, что две биссектрисы пересекаются  и расстояние между XY 1 см(или в чем там измеряется)

Я здесь что-то много написал, но ты разберись и сам напиши попонятнее 
Но я старалась )
4,8(7 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ