Можно. Медиана прямоугольного треугольника к гипотенузе равна её половине и делит исходный на два равнобедренных.
Так как углы равнобедренных треугольников равны, проще всего делить равнобедренный прямоугольный треугольник. Сумма его острых углов 90°, и каждый равен 45° ( см. рис. 1).
Другой случай - медиана, проведенная из прямого угла, делит исходный на остроугольный и тупоугольный с вершиной на гипотенузе. . Тупоугольный треугольник можно разделить на 3 равнобедренных, два крайних при этом будут между собой равны. (см. рис.2). Равные углы окрашены в одинаковые цвета. Доказать, что эти треугольники равнобедренные, наверняка сможете без труда.
16√3 см².
Объяснение:
Осевым сечением конуса является равнобедренный треугольник, боковой стороной которого является образующая, а основанием является диаметр основания конуса.
1. Пусть ∆ АВС - осевое сечение конуса. АВ = ВС = 8 см. Углы при основании равнобедренного треугольника равны, тогда
∠ ВАС = ∠ ВСА = 30°. По. теореме о сумме углов треугольника ∠ АВС = 180° - (30° + 30°) = 120°.
2. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними.
В нашем случае
S = 1/2 • AB • BC • sin 120° = 1/2• 8•8• sin(180° - 60°) = 32•√3/2 = 16√3 (см²).