Из точки М пересечения диагоналей опустим перпендикуляр МР на ВС и перпендикуляр МК на АД. В сумме эти перпендикуляры равны высоте трапеции, т.е.
Нтрап = (МР + МК).
Площадь тр-ка МВС S1 = 1/2 ВС·МР
Площадь тр-ка МАД S2 = 1/2 АД·МК
Треугольники МВС и МАД подобны, с коэффициентом подобия
К= √(32:8) = 2
Из подобия тр-ков следует пропорциональность оснований и высот:
ВС/АД =МР/МК = 1/2 , откуда
АД = 2ВС, а МК = 2МР
Площадь трапеции равна
Sтрап = 0,5·(АД + ВС)·Нтрап =
= 0,5(АД + ВС)·(МР + МК) =
= 0,5(2ВС + ВС)·(МР + 2МР) =
= 0,5·3ВС·3МР =
= 9·(0,5ВС·МР) =
= 9·S1 =
= 9·8 = 72
ответ: площадь трапеции равна 72
Построение сечения.
1. Проводим пряную ЕF до пересечения с продолжениями отрезков
СВ (F1) и СD (Е1). ЕF -линия пересечения секущей плоскости и плоскости основания.
2. Проводим прямую НF1, пересечение этой прямой с ребром ВВ1 -
точка G. GH - линия пересечения секущей плоскости и грани ВВ1С1С.
3. Соединим точки F и G. FG - линия пересечения секущей плоскости и грани АА1В1В.
4. Плоскости АВСD и А1В1С1D1 параллельны, значат линия НК пересечения секущей плоскости и грани А1В1С1D1 будет проходить через точку Н параллельно прямой ЕF.
5. Проводим прямую КЕ1, пересечение этой прямой с ребром DD1 -точка Р. КР -линия пересечения секущей плоскости и грани DD1C1C.
6. Соединим точки Р и Е. РЕ -линия пересечения секущей плоскости и грани АА1D1D.
Нахождение угла.
Угол между плоскостью сечения EFGHKP и плоскостью А1ВD -угол
A1RQ = α, образованный пересечением указанных плоскостей плоскостью, перпендикулярной к обеим плоскостям, то есть перпендикулярной к линии пересечения МN данных двух плоскостей.
Заметим, что этот угол равен углу А1ОС1, так как QL параллельна С10
(так как LО=С1Q, потому что EF - средняя линия прямоугольного треугольника АЕF и АL=LO=C1Q). Половина диагонали основания
(квадрата со стороной а) СО равна а*√2/2.
А тангенс угла С10С равен СС1/СО = а*2/а*√2 = √2.
По таблице тангенсов угол С10С ≈ 55°. Значит и симметричный с ним угол А1ОА =55°, их сумма равна 110°, а дополняющий эти два угла до развернутого искомый угол равен 180°-110°=70°.
ответ: угол между плоскостями FGНКРЕ и A1BD ≈ 70°.
ответ в приложенном рисунке.