Пирамида правильная. Значит, основанием данной пирамиды является правильный многоугольник, а вершина проецируется в центр этого многоугольника.
Апофемой называется высота боковой грани, проведенная из вершины правильного многогранника.
Центр правильного треугольника - точка пересечения его высот, являющихся в правильном треугольнике медианами и биссектрисами.
а)
На рисунке в приложении О - центр основания. СН - высота ( медиана). Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
Следовательно, отрезок СО=2/3 высоты СН, отрезок ОН=1/3 высоты СН.
Все углы правильного треугольника равны :180°:3=60°
CН=СВ•sin60°=6•√3/2
CO=6√3/6=√3
ОН перпендикулярна АВ и является проекцией МН на плоскость АВС. По теореме о трёх перпендикулярах МН⊥АВ. =>
МН высота ∆ АМВ, т.е. апофема данной правильной пирамиды.
Высота пирамиды перпендикулярна основанию. => МО⊥СН.
Из прямоугольного ∆МОН по т.Пифагора
МН=√(МО²+НО²)=√(16+3)=√19 (ед. длины)
б)
Все боковые грани правильной пирамиды - равные равнобедренные треугольники. => их площади равны.
S (AMB)=MH•AB:2=√19•6:2=3•√19
S(бок)=3•3√19=9√19 (ед. площади)
По условию: АМ:МВ = 1:2 ⇒ МВ = 2АМ
т.к. АВ = АМ+МВ, то АВ = АМ+2АМ = 3АМ
⇒ АМ = 9:3 = 3см, МВ = 3*2 = 6см
2. Δ АВС:
2. ΔCMB:
по теореме косинусов:
СМ² = МВ² + СВ² - 2*МВ*СВ*cosB
CM² = 36+9 - 2*6*1*1/3 = 45 - 12 = 33
CM = √33
ответ: √33