ΔАОВ -равнобедренный, т.к. ОА =ОВ=R радиус описанной около треугольника окружности, центр такой окружности - точка пересечения серединных перпендикуляров. Поэтому если провести из точки О к АВ высоту, например, ОТ, то она будет и биссектрисой, и медианой, т.к. биссектриса, то разбила ∠АОВ пополам, т.е. по 30° каждый и в прямоуг. треугольнике АТО АТ - катет, лежащий против угла в 30°, а он равен половине гипотенузы, т.е. ОА=8см, значит, сама сторона АВ =4*2=8/см Можно было решить намного проще, учитав, что треугольник не только равнобедренный, но и равносторонний, т.к. угол при вершине 60°, а при основании (180°-60°)/2=60°, поэтому сторона АВ равна радиусу окружности, т.е. 8см.
ответ 8 см.
Дана правильная треугольная пирамида. Её высота Н равна a√3, радиус окружности, описанной около её основания, равен 2a.
Найти: а) апофему А пирамиды.
Радиус R окружности, описанной около её основания, равен 2/3 высоты основания, то есть R = в√3/3, где в - сторона основания.
Находим сторону основания: в = R/(√3/3) = R√3 = 2a√3.
Отсюда апофема равна: А = √(Н² + (R/2)²) = √(3a² + a²) = √4a² = 2a.
Величина R/2 равна 1/3 высоты основания или радиусу вписанной окружности в основание.
б) угол α между боковой гранью и основанием равен:
α = arc tg(H/(R/2)) = arc tg(a√3/a) = arc tg√3 = 60 градусов.
в) площадь Sбок боковой поверхности.
Периметр основания Р = 3в = 3*2a√3 = 6a√3.
Sбок = (1/2)РА = (1/2)*(6a√3)*2а = 6a²√3 кв.ед.
г) плоский угол γ при вершине пирамиды(угол боковой грани).
γ = 2arc tg((в/2)/А) = 2arc tg((2а√3/2)/2а) = 2arc tg(√3/2) ≈ 1,42745 радиан или 81,7868 градуса.
3х° - одна дуга
5х° - вторая дуга
Дуга всей окружности 360°, с.у
3х° + 5х° = 360°
х = 45° - составляет одна часть
3х° =3*45°=135° - одна дуга
5х° =5*45° =225° - вторая дуга
Градусная мера вписанного угла = половине градусной меры дуги, на которую он (угол) опирается своими сторонами.
135°: 2=67,5° - один угол
225°: 2=112,5° - второй угол