Объяснение:
1)АМ - гипотеза, ВМ-катет против угла 30*,тогда
ВМ=1/2 ВМ=26:2=13
2)<А=90-60=30*,тогда ВМ-катет против угла 30*,ВМ=30:2=15
5)∆АВС - равносторонний, все углы равны и высота является биссектрисой, <МАВ=30*
Расстояние от М до АВ - это перпендикуляр МК к стороне АВ и в ∆МКА МК является катетом против угла 30* и МК=МА:2=8:2=4
6) кратчайшее расстояние от М до АВ - это высота из вершины М.
∆АВМ прямоугольный, равнобедренный и высота МН является медианой. Тогда по свойству медианы прямоугольного треугольника МН=8:2=4
Объяснение:
Дано: - правильная усеченная четырехугольная пирамида,
,
,
,
, AK = KB,
Найти: FK - ?
Решение: По свойствам правильной усеченной четырехугольной пирамиды её основаниями являются квадраты, а высота пирамиды проходит через центры квадратов. Так точка O - точка пересечения диагоналей квадрата ABCD, то диагонали точкой пересечения делятся пополам по свойствам квадрата. Так как диагонали квадрата равны по теореме, то и половины диагоналей также равны, тогда AO = OB и треугольник ΔAOB - равнобедренный. Так как для треугольника ΔAOB отрезок OK - медиана
(по условию AK = KB), то по теореме медиана равнобедренного треугольника проведенная к основания является биссектрисой и высотой. Треугольник ΔBOK подобен треугольнику ΔBDA по двум углам так как угол ∠OBK - общий и OK ⊥ AB, и DA ⊥ AB.
Так как ΔBOK подобен треугольнику ΔBDA:
.
Так как квадрат ABCD подобен квадрату так как все углы квадрата равны 90°, то можно записать отношения соответствующих элементов квадрата:
.
TFOK - трапеция так как FT║OK по свойствам правильной усеченной четырехугольной пирамиды . Рассмотрим трапеция TFOK.Трапеция TFOK - прямоугольная так как по условию
и OK ⊂ ABC .Проведем высоту из точки F в точку H на основании OK. Так как FH - высота трапеции и TO - высота трапеции, то FH = TO = 4. По свойствам трапеции четырехугольник TOHF - прямоугольник, тогда его противоположные стороны равны по свойствам прямоугольника и TF = OH = 4. OK = OH + HK ⇒ HK = OK - OH = 7 - 4 = 3. Рассмотрим прямоугольный (FH ⊥ OK по построению) треугольник ΔFHK. По теореме Пифагора:
.
P=a+b+c
Р(1)=3,5+4,5+5,5=13,5см- периметр первого треугольника
Р(2)= 7+9+11= 27 см - периметр второго треугольника
13,5/27