Внутри равнобедренного треугольника авс отмечена точка о так что ао=во= со . прямая во пересекает ас в точке д .нужно доказать что вд является медианой,высотой и бссектрисой
Рассмотрим треугольники АОС он равно бедренный =>(это значёк отсюда следует) углы при основании равны. теперь рассмотрим треугольники АВО и ВСО они равныпо двум сторонам и углу между ними т.к. АВ=ВС по свойству равнобедренных треугольников Ао=ОС по условию угол ВАО = углу ВОС т. к. углы А И С равня по свой ству равнобедренного треугольника , а углы ОАС и ОСА равны из выше доказанного =>углы ВАО и ВСО тоже равны т. к треугольники равны соответственные элементы в них равны => угол АВО = углу ОВС =>ВД биссектрисса
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. Из прямоугольного треугольника АСН найдем АС. Так как Sinφ=√15/8, то cosφ=√(1-15/64)=7/8. Тогда АС=НС/Cosφ или АС=7*8/7 = 8. Найдем АН по Пифагору. АН=√(АС²-НС²) или АН=√(64-49) = √15. Перпендикуляр ВР=АН=√15. Найдем DP по Пифагору. DP=√(BD²-BP²) или DP=√(96-15) = 9. Прямоугольные треугольники НСО и DРО подобны с коэффициентом подобия равным НС/DP=7/9.Значит НО/ОР=7/9 или НО/(НР-НО)=7/9. Но НР=АВ=16. Отсюда НО=7. Тогда ОР=16-7=9. По Пифагору найдем ОС и OD из прямоугольных треугольников СНО и DPO. ОС=7√2, OD=9√2, CD=CO+OD=16√2. Тогда периметр четырехугольника CАВD равен СА+АВ+ВD+DС=8+16+4√6+16√2=24+4√2(√3+4).
Сумма внутренних углов выпуклого многоугольника равна 180(n-2), где n- число сторон в многоугольнике. Возьмем любой многоугольник и поставим внутри его точку О. Затем эту точку О соединим со всеми вершинами многоугольника. Получится n треугольников, где n - число сторон многоугольника. Сумма углов в треугольнике равна 180 градусов. А сумма углов в n треугольниках будет равна 180n. А сумма углоа вокруг точки О равна 360 градусов. И если мы из 180n вычтем сумму углов вокруг точки О, то получится 180n - 360 = 180(n-2).