М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

1) диагонали плоского четырехугольника abcd пересекаются в точке o. из точки o проведены перпендикуляр om к прямой ab и перпендикуляр ok к плоскости четырехугольника. докажите, что угол между прямыми mk и ab прямой. найдите расстояние от точки b до плоскости okm, если km=корень из 3, угол mkb=30 градусов. 2) в треугольнике abc ac=bc=10 см, угол в=30 градусам. прямая bd перпендикулярна плоскости треугольника, bd=5 см. найдите расстояние от точки d до прямой ас и расстояние от точки в до плоскости adc.

👇
Ответ:
ника2760
ника2760
16.11.2022

1. a) КО - перпендикуляр к плоскости АВСД.

КМ - наклонная, перпендикуляр ОМ - проекция наклонной. Теорема о 3-х перпендикулярах: Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной. ⇒

АВ⊥КМ и ∠КМВ=90°

б) ВМ перпендикулярна двум пересекающимся прямым КМ и ОМ на плоскости КМО ⇒ ВМ перпендикулярна плоскости КМО, и длина отрезка ВМ - расстояние от т.В до плоскости ОКМ. 

∆ ВКМ прямоугольный. ВМ=КМ•tg30°=√3•(1/√3)=1

—————————

2. В ∆ АВС АС=ВС=10 см. ⇒∆ АВС - равнобедренный. 

Угол А при основании равнобедренного ∆ АСВ  равен углу В=30°. ⇒ 

угол С=180}-2•30°=120°

а) Расстояние от D до прямой АС - длина перпендикуляра DН, проведенного из D к прямой АС. 

DH⊥АС. Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной. ⇒ 

∆ ВНС -прямоугольный. 

Угол ВСН=180°-угол ВСА=180°-120°=60°(смежный углу С)

ВН=ВС•sin60°=10•√3/2=5√3

Т,к. BD перпендикулярна плоскости АВС, она перпендикулярна любой прямой, лежащей в той же плоскости. ∆ DBH- прямоугольный. 

По т. Пифагора 

DH=(√BD*+BH*)=√(25+75)=10 см. 

Плоскости DBH и DHC  перпендикулярны. (Если одна из двух плоскостей проходит через прямую (BD), перпендикулярную другой плоскости (ABH), то такие плоскости перпендикулярны.)

  Расстояние от точки до плоскости - это длина перпендикуляра, опущенного из заданной точки к заданной плоскости. 

Искомое расстояние -  расстояние от вершины прямого угла В до гипотенузы  ∆ ВDH, т.е. равно высоте, проведенной к гипотенузе. 

S (BDH)=0,5•BD•BH

S (BDH)=0,5•BK•DH⇒

 BD•BH=BK•DH 

5•5√3=BK•10⇒

BK=2,5√3 см. 


1) диагонали плоского четырехугольника abcd пересекаются в точке o. из точки o проведены перпендикул
4,4(92 оценок)
Открыть все ответы
Ответ:
Ivan700
Ivan700
16.11.2022

Пусть АВС - прямоуг. равноб. треугольник, где АВ и АС -катеты, и АВ = АС, т. е. угол А - прямой. Из вершины В проведена биссектриса до пересечения с катетом АС в точке Д. Нужно найти соотношение АД и ДС.

Известно, что биссектриса делит противоположную сторону треугольника на части, пропорциональные прилежащим сторонам ( из свойств биссектрисы) .

Значит, АД/ДС = АВ/ВС. Пусть АВ = АС = а . Тогда ВС^2 = а^2 + a^2 = 2a^2 . BC = кв. корень (2a^2) = a*кв. корень (2) .

Тогда АД/ДС = а / ( а*кв. корень (2)) = 1 / кв. корень (2).

Т. е. отрезки катета, разделенные биссектрисой, относятся друг к другу как единица к квадратному корню из двух, считая от прямого угла.

Объяснение:

4,4(82 оценок)
Ответ:
Nshok1
Nshok1
16.11.2022

(х – а)² + (у – b)² = R² – уравнение окружности, записанное в общем виде, где (а; b) – координаты центра окружности; R – радиус окружности. Из условия задачи известно, что уравнение окружности проходит через точку 8 на оси Ox, то есть через точку с координатами (8; 0), и через точку 4 на оси Oy, то есть через точку с координатами (0; 4). При этом центр находится на оси Oy, значит, точка (0; b) является центром окружности. Подставляя поочередно координаты этих точек в уравнение, получим систему двух уравнений с двумя неизвестными:

(8 – 0)² + (0 – b)² = R² и (0 – 0)² + (4 – b)² = R²;

(8 – 0)² + (0 – b)² = (0 – 0)² + (4 – b)²;

8² + b² = (4 – b)²;

b² – 8 ∙ b + 4² – 8² – b² = 0;

8 ∙ b = – 48;

b = – 6, тогда, R = 10, и уравнение окружности примет вид:

х² + (у + 6)² = 10².

ответ: х² + (у + 6)² = 10² – уравнение данной окружности.

4,4(88 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ