Пусть АВС - прямоуг. равноб. треугольник, где АВ и АС -катеты, и АВ = АС, т. е. угол А - прямой. Из вершины В проведена биссектриса до пересечения с катетом АС в точке Д. Нужно найти соотношение АД и ДС.
Известно, что биссектриса делит противоположную сторону треугольника на части, пропорциональные прилежащим сторонам ( из свойств биссектрисы) .
Значит, АД/ДС = АВ/ВС. Пусть АВ = АС = а . Тогда ВС^2 = а^2 + a^2 = 2a^2 . BC = кв. корень (2a^2) = a*кв. корень (2) .
Тогда АД/ДС = а / ( а*кв. корень (2)) = 1 / кв. корень (2).
Т. е. отрезки катета, разделенные биссектрисой, относятся друг к другу как единица к квадратному корню из двух, считая от прямого угла.
Объяснение:
(х – а)² + (у – b)² = R² – уравнение окружности, записанное в общем виде, где (а; b) – координаты центра окружности; R – радиус окружности. Из условия задачи известно, что уравнение окружности проходит через точку 8 на оси Ox, то есть через точку с координатами (8; 0), и через точку 4 на оси Oy, то есть через точку с координатами (0; 4). При этом центр находится на оси Oy, значит, точка (0; b) является центром окружности. Подставляя поочередно координаты этих точек в уравнение, получим систему двух уравнений с двумя неизвестными:
(8 – 0)² + (0 – b)² = R² и (0 – 0)² + (4 – b)² = R²;
(8 – 0)² + (0 – b)² = (0 – 0)² + (4 – b)²;
8² + b² = (4 – b)²;
b² – 8 ∙ b + 4² – 8² – b² = 0;
8 ∙ b = – 48;
b = – 6, тогда, R = 10, и уравнение окружности примет вид:
х² + (у + 6)² = 10².
ответ: х² + (у + 6)² = 10² – уравнение данной окружности.
1. a) КО - перпендикуляр к плоскости АВСД.
КМ - наклонная, перпендикуляр ОМ - проекция наклонной. Теорема о 3-х перпендикулярах: Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной. ⇒
АВ⊥КМ и ∠КМВ=90°
б) ВМ перпендикулярна двум пересекающимся прямым КМ и ОМ на плоскости КМО ⇒ ВМ перпендикулярна плоскости КМО, и длина отрезка ВМ - расстояние от т.В до плоскости ОКМ.
∆ ВКМ прямоугольный. ВМ=КМ•tg30°=√3•(1/√3)=1
—————————
2. В ∆ АВС АС=ВС=10 см. ⇒∆ АВС - равнобедренный.
Угол А при основании равнобедренного ∆ АСВ равен углу В=30°. ⇒
угол С=180}-2•30°=120°
а) Расстояние от D до прямой АС - длина перпендикуляра DН, проведенного из D к прямой АС.
DH⊥АС. Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной. ⇒
∆ ВНС -прямоугольный.
Угол ВСН=180°-угол ВСА=180°-120°=60°(смежный углу С)
ВН=ВС•sin60°=10•√3/2=5√3
Т,к. BD перпендикулярна плоскости АВС, она перпендикулярна любой прямой, лежащей в той же плоскости. ∆ DBH- прямоугольный.
По т. Пифагора
DH=(√BD*+BH*)=√(25+75)=10 см.
Плоскости DBH и DHC перпендикулярны. (Если одна из двух плоскостей проходит через прямую (BD), перпендикулярную другой плоскости (ABH), то такие плоскости перпендикулярны.)
Расстояние от точки до плоскости - это длина перпендикуляра, опущенного из заданной точки к заданной плоскости.
Искомое расстояние - расстояние от вершины прямого угла В до гипотенузы ∆ ВDH, т.е. равно высоте, проведенной к гипотенузе.
S (BDH)=0,5•BD•BH
S (BDH)=0,5•BK•DH⇒
BD•BH=BK•DH
5•5√3=BK•10⇒
BK=2,5√3 см.