1. Диагональ осевого сечения делит квадрат на два равнобедренных прямоугольных треугольника с острыми углами в 45° H=4√2·sin45°=4 Диаметр основания D(основания)=Н=4 R=D/2=2 V=πR²H=π2²·4=16π В ответе 16π:π=16 2. V₁:V₂=πR²₁H₁:πR²₂H₂=3²·5:5²·3=3:5=0,6 3. Диагональ осевого сечения делит прямоугольник на два равных прямоугольных треугольника с острыми углами в 30° и 60°. Катет, против угла в 30°( высота цилиндра) равен половине гипотенузы 4/2=2 Диаметр основания по теореме Пифагора D= √(4²-2²)=√12=2√3 Радиус основания R=D/2=√3 V=πR²H=π(√3)²·2=6π В ответе 6π:π=6 4) S(бок. цилиндра)=2π·R·H 2π·R·H=2π R·H=1 D=1 ⇒ 2R=1 ⇒ R=1/2 H=2 V=πR²H=π(1/4)·2=(1/2)π В ответе (1/2)π:π=1/2=0,5
Правильный шестиугольник можно разделить на 6 правильных треугольников, поэтому площадь шестиугольника будет равна
, где а - сторона шестиугольника и любого из правильных треугольников. Зная площадь шестиугольника, мы находим, что . Каждая сторона шестиугольника стягивает дугу в 360\6= 60 градусов. А каждая сторона квадрата стягивает 360\4=90 градусов. Составим отношение: 60\а=90\б, где б - сторона квадрата. Выразим б. б=90а\60=. Площадь квадрата - это квадрат его стороны, поэтому его площадь будет равна 18.
1)уголА=80 градусов
В=100
С=80
D=100
2)уголB-уголA=30градусов
A=x ; B=x+30 ; A+B=x +x+30=2x+30 =180 ; x=75
A=75
B=105
C=75
D=105
3)угол А+уголC=140 градусов
A=C=140/2=70
A=70
B=110
C=70
D=110
4)уголB=2угла А
A=x ; B=2x ; A+B=x+2x=3x=180 ; x=60
A=60
B=120
C=60
D=120
5)уголABD=90градусов,уголADB=30ГРАДУСОВ - это треугольник
третий угол DAB = 180-90-30 =60 = A
A=60
B=120
C=60
D=120