75 см²
Объяснение:
Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
АС²=12² + 9AC²/25
AC² - 9AC²/25=144
16AC²=3600
AC² = 225
AC=15 см
S ABC = 1/2AC*BH=7,5*10=75 см²
Объяснение:
1) треугольник равнобедренный, боковые стороны по 10 см, основание 12 см. Проведем высоту на основание. Она делит основание пополам. Получившийся треугольник прямоугольный, сторона 10 см - гипотенуза, 12/2=6 см - один катет, тогда второй катет (высота) по т. Пифагора равна: √(10²-6²)=8 см;
площадь треугольника - S=ah/2, где а - сторона треугольника, h - высота проведенная к ней.
S=12*8/2=48 см²;
высоты проведенные к боковым сторонам равнобедренного треугольника равны и составляют:
h=2S/b, где в - боковая сторона;
h=2*48/12=8 см.
3). Для нахождения площади треугольника воспользуемся формулой Герона: S=√(p(p-a)(p-b)(p-c)), где р - полупериметр, а, в, с - стороны треугольника;
Р=4+13+15=32 дм, р=Р/2=32/2=16;
S=√(16(16-4)(16-13)(16-15))=√(16*12*3*1)=24 дм²;
h₁=2S/a=2*24/4=12 дм;
h₂=2S/b=2*24/13≈3,7 дм;
h₃=2S/c=2*24/15=3,2 дм.
(вторая часть)
1). Принцип тот-же.
Р=5+6+7=18 см, р=18/2=9;
S=√(9(9-5)(9-6)(9-7))=√(9*4*3*2)=√216=6√6;
h₁=2S/5=12√6/5 см;
h₂=2S/6=2√6 см;
h₃=2S/7=12√6/7 см; - высота опущенная на большую сторону треугольника.
3). проверяем треугольник по т. Пифагора: 24²+7²=25² ⇒ треугольник прямоугольный. Наибольшая сторона - гипотенуза. Высота, опущенная на гипотенузу, равна отношению произведения катетов к гипотенузе.
h=ab/c, где а, в - катеты, с - гипотенуза;
h=24*7/25=6,72 см.